Muscle capillary supply and fiber type characteristics in weight and power lifters

1984 ◽  
Vol 56 (1) ◽  
pp. 35-38 ◽  
Author(s):  
P. A. Tesch ◽  
A. Thorsson ◽  
P. Kaiser

Muscle tissue samples were obtained from vastus lateralis muscle of elite weight/power lifters (WL/PL, n = 8), endurance athletes (EA, n = 8), and nonathletes (NA, n = 8). Histochemical stainings for myofibrillar ATPase, NADH-tetrazolium reductase, and amylase-periodic acid-Schiff, respectively, were undertaken to assess relative distribution of fast-twitch (FT) and slow-twitch (ST) muscle fiber types, fiber size, and capillary supply [capillaries per fiber (cap X fib-1) and capillaries per mm2 (cap X mm-2)]. Fiber type distribution in WL/PL, EA, and NA averaged 59 +/- 6 (SD), 40 +/- 11, and 61 +/- 10% FT. Values for mean fiber area and FT/ST area were significantly greater in WL/PL compared with values obtained in EA and NA. Similar values for cap X fib-1 were observed WL/PL (2.06 +/- 0.74) and NA (2.16 +/- 0.34). EA exhibited greater cap X fib-1 (3.11 +/- 0.73) than WL/PL (NS) and NA (P less than 0.01). However, cap X mm-2 in WL/PL (199 +/- 29) was lower than in EA (401 +/- 61, P less than 0.001) and NA (306 +/- 29, P less than 0.01). It is suggested that heavy resistance training in contrast to endurance training does not result in increased capillary density. Instead, as a consequence of fiber hypertrophy induced by muscle overloading, capillary density is decreased.

1987 ◽  
Vol 63 (1) ◽  
pp. 75-83 ◽  
Author(s):  
H. J. Green ◽  
M. E. Ball-Burnett ◽  
M. A. Morrissey ◽  
M. J. Spalding ◽  
R. L. Hughson ◽  
...  

To examine the significance of endogenous stores of glycogen in specific fiber types (I, IIa, IIb) of the costal region of the diaphragm, adult male Wistar rats performed continuous running (25 m/min, 8 degrees grade) exercise for either 30 min or until fatigue. At 30 min of exercise, glycogen loss, as measured microphotometrically using the periodic acid-Schiff technique averaged between 73 and 80% (P less than 0.05) in the different fiber types. When exercise was performed to exhaustion, representing an additional 94 min, no further reduction in glycogen was observed in any fiber type. Biochemical determinations of glycogen from the diaphragm confirmed the extensive reduction in glycogen concentration with exercise. Large reductions (P less than 0.05) in glycogen were also noted in the soleus, plantaris, and vastus lateralis red. Although significant depletion (P less than 0.05) occurred in the vastus lateralis white, it was not as pronounced as in these other muscles. Repletion to preexercise glycogen concentration was complete by 4 h of recovery in all muscles except the vastus lateralis white. It is concluded that endogenous glycogen is a significant substrate in all muscles sampled regardless of fiber composition. In the case of the costal region of the diaphragm, the increased work of breathing resulting from heavy exercise leads to the recruitment of all fiber types, and each fiber type depends on glycogen as a substrate at least early in the exercise.


1985 ◽  
Vol 59 (6) ◽  
pp. 1716-1720 ◽  
Author(s):  
P. A. Tesch ◽  
J. Karlsson

Tissue samples were obtained from vastus lateralis and deltoid muscles of physical education students (n = 12), Greco-Roman wrestlers (n = 8), flat-water kayakers (n = 9), middle- and long-distance runners (n = 9), and olympic weight and power lifters (n = 7). Histochemical stainings for myofibrillar adenosinetriphosphatase and NADH-tetrazolium reductase were applied to assess the relative distribution of fast-twitch and slow-twitch (ST) muscle fiber types and fiber size. The %ST was not different in the vastus (mean SD 48 +/- 14) and deltoid (56 +/- 13) muscles. The %ST was higher (P less than 0.001), however, in the deltoid compared with vastus muscle of kayakers. This pattern was reversed in runners (P less than 0.001). The %ST of the vastus was higher (P less than 0.001) in runners than in any of the other groups. The %ST of the deltoid muscle was higher in kayakers than in students, runners (P less than 0.001), and lifters (P less than 0.05). The mean fiber area and the area of ST fibers were greater (P less than 0.01) in the vastus than the deltoid muscle. Our data show a difference in fiber type distribution between the trained and nontrained muscles of endurance athletes. This pattern may reflect the adaptive response to long-term endurance training.


1996 ◽  
Vol 80 (3) ◽  
pp. 1061-1064 ◽  
Author(s):  
D. Constantin-Teodosiu ◽  
S. Howell ◽  
P. L. Greenhaff

The effect of prolonged exhaustive exercise on free carnitine and acetylcarnitine concentrations in mixed-fiber skeletal muscle and in type I and II muscle fibers was investigated in humans. Needle biopsy samples were obtained from the vastus lateralis of six subjects immediately after exhaustive one-legged cycling at approximately 75% of maximal O2 uptake from both the exercised and nonexercised (control) legs. In the resting (control) leg, there was no difference in the free carnitine concentration between type I and II fibers (20.36 +/- 1.25 and 20.51 +/- 1.16 mmol/kg dry muscle, respectively) despite the greater potential for fat oxidation in type I fibers. However, the acetylcarnitine concentration was slightly greater in type I fibers (P < 0.01). During exercise, acetylcarnitine accumulation occurred in both muscle fiber types, but accumulation was greatest in type I fibers (P < 0.005). Correspondingly, the concentration of free carnitine was significantly lower in type I fibers at the end of exercise (P < 0.001). The sum of free carnitine and acetylcarnitine concentrations in type I and II fibers at rest was similar and was unchanged by exercise. In conclusion, the findings of the present study support the suggestion that carnitine buffers excess acetyl group formation during exercise and that this occurs in both type I and II fibers. However, the greater accumulation of acetylcarnitine in type I fibers during prolonged exercise probably reflects the greater mitochondrial content of this fiber type.


2007 ◽  
Vol 103 (5) ◽  
pp. 1752-1756 ◽  
Author(s):  
T. M. Altenburg ◽  
H. Degens ◽  
W. van Mechelen ◽  
A. J. Sargeant ◽  
A. de Haan

In literature, an inconsistency exists in the submaximal exercise intensity at which type II fibers are activated. In the present study, the recruitment of type I and II fibers was investigated from the very beginning and throughout a 45-min cycle exercise at 75% of the maximal oxygen uptake, which corresponded to 38% of the maximal dynamic muscle force. Biopsies of the vastus lateralis muscle were taken from six subjects at rest and during the exercise, two at each time point. From the first biopsy single fibers were isolated and characterized as type I and II, and phosphocreatine-to-creatine (PCr/Cr) ratios and periodic acid-Schiff (PAS) stain intensities were measured. Cross sections were cut from the second biopsy, individual fibers were characterized as type I and II, and PAS stain intensities were measured. A decline in PCr/Cr ratio and in PAS stain intensity was used as indication of fiber recruitment. Within 1 min of exercise both type I and, although to a lesser extent, type II fibers were recruited. Furthermore, the PCr/Cr ratio revealed that the same proportion of fibers was recruited during the whole 45 min of exercise, indicating a rather constant recruitment. The PAS staining, however, proved inadequate to fully demonstrate fiber recruitment even after 45 min of exercise. We conclude that during cycling exercise a greater proportion of type II fibers is recruited than previously reported for isometric contractions, probably because of the dynamic character of the exercise. Furthermore, the PCr/Cr ratio method is more sensitive in determining fiber activation than the PAS stain intensity method.


1992 ◽  
Vol 40 (4) ◽  
pp. 563-568 ◽  
Author(s):  
R S Staron ◽  
R S Hikida

A muscle biopsy from the vastus lateralis muscle of a strength-trained woman was found to contain an unusual fiber type composition and was analyzed by histochemical, biochemical, and ultrastructural techniques. Special attention was given to the C-fibers, which comprised over 15% of the total fiber number in the biopsy. The mATPase activity of the C-fibers remained stable to varying degrees over the pH range normally used for routine mATPase histochemistry. Although a continuum existed, the C-fibers were histochemically subdivided into three main fiber types: IC, IIC, and IIAC. The IC fibers were histochemically more similar to the Type I, the IIAC were more similar to the Type IIA, and the IIC were darkly stained throughout the pH range. Biochemical analysis revealed that all C-fibers coexpressed myosin heavy chains (MHC) I and IIa in variable ratios. The histochemical staining intensity correlated with the myosin heavy chain composition such that the Type IC fibers contained a greater ratio of MHCI/MHCIIa, the IIAC contained a greater ratio of MHCIIa/MHCI, and the Type IIC contained equal amounts of these two heavy chains. Ultrastructural data of the C-fiber population revealed an oxidative capacity between fiber Types I and IIA and suggested a range of mitochondrial volume percent from highest to lowest such that I greater than IC greater than IIC greater than IIA-C greater than IIA. Under physiological conditions, it appears that the IC fibers represent Type I fibers that additionally express some fast characteristics, whereas the Type IIAC are Type IIA fibers that additionally express some slow characteristics. Fibers expressing a 50:50 mixture of MHCI and MHCIIa (IIC fibers) were rarely found. It is not known whether C-fibers represent a distinct population between the fast- and slow-twitch fibers that is specifically adapted to a particular usage or whether they are transforming fibers in the process of going from fast to slow or slow to fast.


2000 ◽  
Vol 48 (5) ◽  
pp. 623-629 ◽  
Author(s):  
Robert S. Staron ◽  
Fredrick C. Hagerman ◽  
Robert S. Hikida ◽  
Thomas F. Murray ◽  
David P. Hostler ◽  
...  

SUMMARY This study presents data collected over the past 10 years on the muscle fiber type composition of the vastus lateralis muscle of young men and women. Biopsies were taken from the vastus lateralis muscle of 55 women (21.2 ± 2.2 yr) and 95 men (21.5 ± 2.4 yr) who had volunteered to participate in various research projects. Six fiber types (I, IC, IIC, IIA, IIAB, and IIB) were classified using mATPase histochemistry, and cross-sectional area was measured for the major fiber types (I, IIA, and IIB). Myosin heavy chain (MHC) content was determined electrophoretically on all of the samples from the men and on 26 samples from the women. With the exception of fiber Type IC, no significant differences were found between men and women for muscle fiber type distribution. The vastus lateralis muscle of both the men and women contained approximately 41% I, 1% IC, 1% IIC, 31% IIA, 6% IIAB, and 20% IIB. However, the cross-sectional area of all three major fiber types was larger for the men compared to the women. In addition, the Type IIA fibers were the largest for the men, whereas the Type I fibers tended to be the largest for the women. Therefore, gender differences were found with regard to the area occupied by each specific fiber type: IIA>I>IIB for the men and I>IIA>IIB for the women. These data establish normative values for the mATPase-based fiber type distribution and sizes in untrained young men and women.


1993 ◽  
Vol 41 (7) ◽  
pp. 1013-1021 ◽  
Author(s):  
S Boudriau ◽  
M Vincent ◽  
C H Côté ◽  
P A Rogers

We used immunochemical quantification and indirect immunofluorescence to investigate the cell content, distribution, and organization of microtubules in adult rat slow-twitch soleus and fast-twitch vastus lateralis muscles. An immunoblotting assay demonstrated that the soleus muscle (primarily Type I fibers) was found to have a 1.7-fold higher relative content of alpha-tubulin compared with the superficial portion of the vastus lateralis muscle (primarily Type IIb fibers). Both physiological muscle types revealed a complex arrangement of microtubules which displayed oblique, longitudinal, and transverse orientations within the sarcoplasmic space. The predominance of any one particular orientation varied significantly from one muscle tissue section to another. Nuclei were completely surrounded by a dense net-like structure of microtubules. Both muscle fiber types were found to possess a higher density of microtubules in the subsarcolemmal region. These microtubules followed the contour of the sarcolemma in slightly contracted fibers and showed a fine punctate appearance indicative of a restricted distribution. The immunofluorescence results indicate that microtubules are associated with the sarcolemma and therefore may form a part of the membrane cytoskeletal domain of the muscle fiber. We conclude that the microtubule network of the adult mammalian skeletal muscle fiber constitutes a bone fide component of the exosarcomeric cytoskeletal lattice domain along with the intermediate filaments, and as such could therefore participate in the mechanical integration of the various organelles of the myofibers during the contraction-relaxation cycle.


1999 ◽  
Vol 86 (2) ◽  
pp. 474-478 ◽  
Author(s):  
Sven Asp ◽  
Jens R. Daugaard ◽  
Thomas Rohde ◽  
Kristi Adamo ◽  
Terry Graham

Muscle glycogen remains subnormal several days after muscle damaging exercise. The aims of this study were to investigate how muscle acid-soluble macroglycogen (MG) and acid-insoluble proglycogen (PG) pools are restored after a competitive marathon and also to determine whether glycogen accumulates differently in the various muscle fiber types. Six well-trained marathon runners participated in the study, and muscle biopsies were obtained from the vastus lateralis of the quadriceps muscle before, immediately after, and 1, 2, and 7 days ( days 1, 2, and 7, respectively) after the marathon. During the race, 56 ± 3.8% of muscle glycogen was utilized, and a greater fraction of MG (72 ± 3.7%) was utilized compared with PG (34 ± 6.5%). On day 2, muscle glycogen and MG values remained lower than prerace values, despite a carbohydrate-rich diet, but they had both returned to prerace levels on day 7. The PG concentration was lower on day 1 compared with before the race, whereas there were no significant differences between the prerace PG concentration and the concentrations on days 2 and 7. On day 2 the glycogen concentration was particularly low in the type I fibers, indicating that local processes are important for the accumulation pattern. We conclude that a greater fraction of human muscle MG than of PG is utilized during a marathon and that accumulation of MG is particularly delayed after the prolonged exercise bout. Furthermore, factors produced locally appear important for the glycogen accumulation pattern.


2009 ◽  
Vol 106 (3) ◽  
pp. 959-965 ◽  
Author(s):  
Barbara Norman ◽  
Mona Esbjörnsson ◽  
Håkan Rundqvist ◽  
Ted Österlund ◽  
Ferdinand von Walden ◽  
...  

α-Actinins are structural proteins of the Z-line. Human skeletal muscle expresses two α-actinin isoforms, α-actinin-2 and α-actinin-3, encoded by their respective genes ACTN2 and ACTN3. ACTN2 is expressed in all muscle fiber types, while only type II fibers, and particularly the type IIb fibers, express ACTN3. ACTN3 (R577X) polymorphism results in loss of α-actinin-3 and has been suggested to influence skeletal muscle function. The X allele is less common in elite sprint and power athletes than in the general population and has been suggested to be detrimental for performance requiring high power. The present study investigated the association of ACTN3 genotype with muscle power during 30-s Wingate cycling in 120 moderately to well-trained men and women and with knee extensor strength and fatigability in a subset of 21 men performing isokinetic exercise. Muscle biopsies were obtained from the vastus lateralis muscle to determine fiber-type composition and ACTN2 and ACTN3 mRNA levels. Peak and mean power and the torque-velocity relationship and fatigability output showed no difference across ACTN3 genotypes. Thus this study suggests that R577X polymorphism in ACTN3 is not associated with differences in power output, fatigability, or force-velocity characteristics in moderately trained individuals. However, repeated exercise bouts prompted an increase in peak torque in RR but not in XX genotypes, suggesting that ACTN3 genotype may modulate responsiveness to training. Our data further suggest that α-actinins do not play a significant role in determining muscle fiber-type composition. Finally, we show that ACTN2 expression is affected by the content of α-actinin-3, which implies that α-actinin-2 may compensate for the lack of α-actinin-3 and hence counteract the phenotypic consequences of the deficiency.


2015 ◽  
Vol 118 (6) ◽  
pp. 699-706 ◽  
Author(s):  
V. L. Wyckelsma ◽  
M. J. McKenna ◽  
F. R. Serpiello ◽  
C. R. Lamboley ◽  
R. J. Aughey ◽  
...  

The Na+-K+-ATPase (NKA) plays a key role in muscle excitability, but little is known in human skeletal muscle about fiber-type-specific differences in NKA isoform expression or adaptability. A vastus lateralis muscle biopsy was taken in 17 healthy young adults to contrast NKA isoform protein relative abundance between type I and IIa fibers. We further investigated muscle fiber-type-specific NKA adaptability in eight of these adults following 4-wk repeated-sprint exercise (RSE) training, comprising three sets of 5 × 4-s sprints, 3 days/wk. Single fibers were separated, and myosin heavy chain (I and IIa) and NKA (α1–3 and β1–3) isoform abundance were determined via Western blotting. All six NKA isoforms were expressed in both type I and IIa fibers. No differences between fiber types were found for α1-, α2-, α3-, β1-, or β3-isoform abundances. The NKA β2-isoform was 27% more abundant in type IIa than type I fibers ( P < 0.05), with no other fiber-type-specific trends evident. RSE training increased β1 in type IIa fibers (pretraining 0.70 ± 0.25, posttraining 0.84 ± 0.24 arbitrary units, 42%, P < 0.05). No training effects were found for other NKA isoforms. Thus human skeletal muscle expresses all six NKA isoforms and not in a fiber-type-specific manner; this points to their different functional roles in skeletal muscle cells. Detection of elevated NKA β1 after RSE training demonstrates the sensitivity of the single-fiber Western blotting technique for fiber-type-specific intervention effects.


Sign in / Sign up

Export Citation Format

Share Document