Changes in lung, airway, and chest wall function in boys and girls between 8 and 12 yr

1984 ◽  
Vol 57 (2) ◽  
pp. 304-308 ◽  
Author(s):  
M. E. Hibbert ◽  
J. M. Couriel ◽  
L. I. Landau

Maximum expiratory flows, maximum inspiratory and expiratory pressures, and lung volumes were measured in 248 8-yr-old and 215 12-yr-old healthy school children. Eight-year-old girls had smaller total lung capacity but higher volume-corrected expiratory flows than boys. Maximum expiratory flow and total lung capacity increased more in girls than in boys between 8 and 12 yr. Girls had a greater increase in residual volume (0.23 liter for girls, 0.16 liter for boys) as well as lower maximum expiratory and inspiratory pressures (P less than 0.001). Girls have smaller lung volumes than boys, so one would expect smaller airways in girls, but girls generate greater flows, indicating that their airways are possibly wider than those of boys. There is also evidence of unequal growth of the airways and air spaces between 8 and 12 yr. Chest wall development appears less in girls than boys and the difference becomes more marked at 12 yr.

PEDIATRICS ◽  
1959 ◽  
Vol 24 (2) ◽  
pp. 181-193
Author(s):  
C. D. Cook ◽  
P. J. Helliesen ◽  
L. Kulczycki ◽  
H. Barrie ◽  
L. Friedlander ◽  
...  

Tidal volume, respiratory rate and lung volumes have been measured in 64 patients with cystic fibrosis of the pancreas while lung compliance and resistance were measured in 42 of these. Serial studies of lung volumes were done in 43. Tidal volume was reduced and the respiratory rate increased only in the most severely ill patients. Excluding the three patients with lobectomies, residual volume and functional residual capacity were found to be significantly increased in 46 and 21%, respectively. These changes correlated well with the roentgenographic evaluation of emphysema. Vital capacity was significantly reduced in 34% while total lung capacity was, on the average, relatively unchanged. Seventy per cent of the 61 patients had a signficantly elevated RV/TLC ratio. Lung compliance was significantly reduced in only the most severely ill patients but resistance was significantly increased in 35% of the patients studied. The serial studies of lung volumes showed no consistent trends among the groups of patients in the period between studies. However, 10% of the surviving patients showed evidence of significant improvement while 15% deteriorated. [See Fig. 8. in Source Pdf.] Although there were individual discrepancies, there was a definite correlation between the clinical evaluation and tests of respiratory function, especially the changes in residual volume, the vital capacity, RV/ TLC ratio and the lung compliance and resistance.


1993 ◽  
Vol 36 (3) ◽  
pp. 516-520 ◽  
Author(s):  
Jeannette D. Hoit ◽  
Nancy Pearl Solomon ◽  
Thomas J. Hixon

This investigation was designed to test the hypothesis that voice onset time (VOT) varies as a function of lung volume. Recordings were made of five men as they repeated a phrase containing stressed /pi/ syllables, beginning at total lung capacity and ending at residual volume. VOT was found to be longer at high lung volumes and shorter at low lung volumes in most cases. This finding points out the need to take lung volume into account when using VOT as an index of laryngeal behavior in both healthy individuals and those with speech disorders.


1962 ◽  
Vol 17 (5) ◽  
pp. 783-786 ◽  
Author(s):  
John S. Hanson ◽  
Burton S. Tabakin ◽  
Edgar J. Caldwell

Variations in size of the various lung volumes due to changes in body position and as a consequence of treadmill exercise were studied in five normal males. Assumption of the upright posture was associated with highly significant increases in total lung capacity, vital capacity, expiratory reserve volume, and residual volume as compared to resting supine values. Level walking was associated with a decrease of expiratory reserve volume, but a further expansion of residual volume. Vital capacity decreased slightly, but total lung capacity increased by virtue of the proportionately large residual volume increases. Elevation of the treadmill to 4° resulted in slight decreases in all lung volumes, total lung capacity evidencing a barely significant decline. Positional changes in ventilation are described, and on the basis of the “lung clearance index” an increased efficiency of ventilation is seen in the upright posture. Factors possibly operative in these alterations are discussed. Submitted on February 21, 1962


1978 ◽  
Vol 44 (4) ◽  
pp. 521-527 ◽  
Author(s):  
A. De Troyer ◽  
J. C. Yernault ◽  
M. Englert ◽  
D. Baran ◽  
M. Paiva

Elastic recoil pressure of the lungs (Pst(L)), maximum expiratory flow rates (MEF), critical transmural pressure of the collapsible flow-limiting segment (Ptm'), and S-segment conductance (Gs) have been determined in 40 healthy subjects, 7–18 yr old. Pst(L), measured at different lung volumes (fractional) from the expiratory quasi-static pressure-volume curves, increases progressively with age. MEF's, at different lung volumes, are closely related to total lung capacity (TLC); the ratios MEF/TLC, at all lung volumes, are independent of age. Ptm' is also independence of age and body height, most values lying between 0 and -15 cmH2O; this finding suggests that the locus and the behavior of the collapsible segment do not change during growth. Gs, in absolute value, increases with growth but, when adjusted for lung size, Gs decreases steadily with age and body height. These relations suggest that, from childhood to adolescence, the air spaces grow disproportionately more than the airway system.


1987 ◽  
Vol 62 (1) ◽  
pp. 39-46 ◽  
Author(s):  
T. L. Clanton ◽  
G. F. Dixon ◽  
J. Drake ◽  
J. E. Gadek

Lung volumes and inspiratory muscle (IM) function tests were measured in 16 competitive female swimmers (age 19 +/- 1 yr) before and after 12 wk of swim training. Eight underwent additional IM training; the remaining eight were controls. Vital capacity (VC) increased 0.25 +/- 0.25 liters (P less than 0.01), functional residual capacity (FRC) increased 0.39 +/- 0.29 liters (P less than 0.001), and total lung capacity (TLC) increased 0.35 +/- 0.47 (P less than 0.025) in swimmers, irrespective of IM training. Residual volume (RV) did not change. Maximum inspiratory mouth pressure (PImax) measured at FRC changed -43 +/- 18 cmH2O (P less than 0.005) in swimmers undergoing IM conditioning and -29 +/- 25 (P less than 0.05) in controls. The time that 65% of prestudy PImax could be endured increased in IM trainers (P less than 0.001) and controls (P less than 0.05). All results were compared with similar IM training in normal females (age 21.1 +/- 0.8 yr) in which significant increases in PImax and endurance were observed in IM trainers only with no changes in VC, FRC, or TLC (Clanton et al., Chest 87: 62–66, 1985). We conclude that 1) swim training in mature females increases VC, TLC, and FRC with no effect on RV, and 2) swim training increases IM strength and endurance measured near FRC.


2005 ◽  
Vol 98 (3) ◽  
pp. 817-821 ◽  
Author(s):  
Francesco G. Salerno ◽  
Riccardo Pellegrino ◽  
Gianluca Trocchio ◽  
Antonio Spanevello ◽  
Vito Brusasco ◽  
...  

The effects of breathing depth in attenuating induced bronchoconstriction were studied in 12 healthy subjects. On four separate, randomized occasions, the depth of a series of five breaths taken soon (∼1 min) after methacholine (MCh) inhalation was varied from spontaneous tidal volume to lung volumes terminating at ∼80, ∼90, and 100% of total lung capacity (TLC). Partial forced expiratory flow at 40% of control forced vital capacity (V̇part) and residual volume (RV) were measured at control and again at 2, 7, and 11 min after MCh. The decrease in V̇part and the increase in RV were significantly less when the depth of the five-breath series was progressively increased ( P < 0.001), with a linear relationship. The attenuating effects of deep breaths of any amplitude were significantly greater on RV than V̇part ( P < 0.01) and lasted as long as 11 min, despite a slight decrease with time when the end-inspiratory lung volume was 100% of TLC. In conclusion, in healthy subjects exposed to MCh, a series of breaths of different depth up to TLC caused a progressive and sustained attenuation of bronchoconstriction. The effects of the depth of the five-breath series were more evident on the RV than on V̇part, likely due to the different mechanisms that regulate airway closure and expiratory flow limitation.


2021 ◽  
Vol 10 (18) ◽  
pp. 4159
Author(s):  
Oh-Beom Kwon ◽  
Chang-Dong Yeo ◽  
Hwa-Young Lee ◽  
Hye-Seon Kang ◽  
Sung-Kyoung Kim ◽  
...  

Chronic obstructive pulmonary disease (COPD) is one of the most frequently occurring concomitant diseases in patients with non-small cell lung cancer (NSCLC). It is characterized by small airways and the hyperinflation of the lung. Patients with hyperinflated lung tend to have more reserved lung function than conventionally predicted after lung cancer surgery. The aim of this study was to identify other indicators in predicting postoperative lung function after lung resection for lung cancer. Patients with NSCLC who underwent curative lobectomy with mediastinal lymph node dissection from 2017 to 2019 were included. Predicted postoperative FEV1 (ppoFEV1) was calculated using the formula: preoperative FEV1 × (19 segments-the number of segments to be removed) ÷ 19. The difference between the measured postoperative FEV1 and ppoFEV1 was defined as an outcome. Patients were categorized into two groups: preserved FEV1 if the difference was positive and non-preserved FEV1, if otherwise. In total, 238 patients were included: 74 (31.1%) in the FEV1 non-preserved group and 164 (68.9%) in the FEV1 preserved group. The proportion of preoperative residual volume (RV)/total lung capacity (TLC) ≥ 40% in the FEV1 non-preserved group (21.4%) was lower than in the preserved group (36.1%) (p = 0.03). In logistic regression analysis, preoperative RV/TLC ≥ 40% was related to postoperative FEV1 preservation. (adjusted OR, 2.02, p = 0.041). Linear regression analysis suggested that preoperative RV/TLC was positively correlated with a significant difference. (p = 0.004) Preoperative RV/TLC ≥ 40% was an independent predictor of preserved lung function in patients undergoing curative lobectomy with mediastinal lymph node dissection. Preoperative RV/TLC is positively correlated with postoperative lung function.


1980 ◽  
Vol 49 (4) ◽  
pp. 566-570 ◽  
Author(s):  
S. S. Cassidy ◽  
M. Ramanathan ◽  
G. L. Rose ◽  
R. L. Johnson

The diffusing capacity of the lung for carbon monoxide (DLCO) varies directly with lung volume (VA) when measured during a breath-holding interval. DLCO measured during a slow exhalation from total lung capacity (TLC) to functional residual capacity (FRC) does not vary as VA changes. Since VA is reached by inhaling during breath holding and by exhaling during the slow exhalation maneuver, we hypothesized that the variability in the relation between DLCO and VA was due to hysteresis. To test this hypothesis, breath-holding measurements of DLCO were made at three lung volumes, both when VA was reached by inhaling from residual volume (RV) and when Va was reached by exhaling from TLC. At 72% TLC, DLCO was 22% higher when VA was reached by exhalation compared to inhalation (P < 0.02). At 52% TLC, DLCO was 19% higher when VA was reached by exhalation compared to exhalation (P < 0.005). DCLO measured during a slow exhalation fell on the exhalation limb of the CLCO/VA curve. these data indicate that there is hysteresis in DLCO with respect to lung volume.


1960 ◽  
Vol 15 (1) ◽  
pp. 40-42 ◽  
Author(s):  
Stanley S. Heller ◽  
William R. Hicks ◽  
Walter S. Root

Lung volume determinations (tidal volume, inspiratory capacity, inspiratory reserve volume, expiratory reserve volume, vital capacity, maximum breathing capacity, functional residual capacity, residual volume, and total lung capacity) were carried out on 16 professional singers and 21 subjects who had had no professional vocal training. No differences were found between the two groups of subjects, whether recumbent or standing, which could not be explained upon the basis of age, size, or errors involved in making the measurements. Submitted on March 24, 1959


1983 ◽  
Vol 55 (6) ◽  
pp. 1818-1824 ◽  
Author(s):  
W. R. Scott ◽  
H. D. Van Liew

Five subjects slowly inhaled a 200-ml bolus of sulfur hexafluoride (SF6) from residual volume (RV) followed by an O2-Ar mixture to total lung capacity, then exhaled to RV, either slowly or as rapidly as possible. Larger amounts of SF6 and N2 were recovered in fast than in slow exhalations. We calculated the gas volumes of the apical and basal halves of the parenchymal mass as functions of exhaled volume during slow exhalations from 1) the difference between SF6 recovered in slow and fast exhalations and 2) an estimate of the apex-to-base concentration profile of SF6 in the lung after inspiration. The maximal volume difference, where the apex contained 600 ml more gas than the base, occurred when 70% of the vital capacity had been exhaled. The same calculation, but using N2 data, gave unrealistically large volume differences. Apparently SF6 delivered as a bolus results in an apex-to-base gradient that is large relative to intraregional gradients, but dilution of the resident N2 by a non-N2 gas results in sizable intraregional gradients.


Sign in / Sign up

Export Citation Format

Share Document