Effect of nutritional deprivation on diaphragm contractility and muscle fiber size

1986 ◽  
Vol 60 (2) ◽  
pp. 596-603 ◽  
Author(s):  
M. I. Lewis ◽  
G. C. Sieck ◽  
M. Fournier ◽  
M. J. Belman

The influence of nutritional deprivation on the contractile and fatigue properties of the diaphragm was studied in adult rats. Food access was restricted to one-third of normal daily intake until the body weight of nutritionally deprived (ND) animals was approximately 50% of controls (CTL). Isometric contractile properties were studied in an in vitro nerve muscle strip preparation. Both twitch (Pt) and tetanic (Po) tensions of diaphragms from the ND animals were markedly reduced compared with CTL; however, Pt/Po was higher for the ND group. The shape of the force-frequency curve (normalized to Po) was generally similar between the two groups, except at 5 and 10 pulses/s stimulation, where greater relative tensions were produced in diaphragms from the ND animals. Diaphragm fatigue was induced by repetitive stimulation at either 20 or 100 pulses/s. Endurance time (defined as the time required for tension to fall to 50% of initial) of diaphragms from ND animals was prolonged at both 20 and 100 pulses/s. Immediately after induction of fatigue, force-frequency curves for both ND and CTL diaphragms were shifted to the right. However, this rightward shift was attenuated in the ND group compared with CTL. Nutritional deprivation had no effect on the proportions of different fiber types within the diaphragm but did result in a significant decrease in the cross-sectional area of both fast-and slow-twitch fibers. This decrease in cross-sectional area was significantly greater for fast-twitch fibers. We conclude that these changes in diaphragm contractile and fatigue properties occur as a result of the influence of malnutrition on muscle fiber cross-sectional area.

2003 ◽  
Vol 95 (6) ◽  
pp. 2462-2470 ◽  
Author(s):  
B. C. Harrison ◽  
D. L. Allen ◽  
B. Girten ◽  
L. S. Stodieck ◽  
P. J. Kostenuik ◽  
...  

To investigate the effects of microgravity on murine skeletal muscle fiber size, muscle contractile protein, and enzymatic activity, female C57BL/6J mice, aged 64 days, were divided into animal enclosure module (AEM) ground control and spaceflight (SF) treatment groups. SF animals were flown on the space shuttle Endeavour (STS-108/UF-1) and subjected to ∼11 days and 19 h of microgravity. Immunohistochemical analysis of muscle fiber cross-sectional area revealed that, in each of the muscles analyzed, mean muscle fiber cross-sectional area was significantly reduced ( P < 0.0001) for all fiber types for SF vs. AEM control. In the soleus, immunohistochemical analysis of myosin heavy chain (MHC) isoform expression revealed a significant increase in the percentage of muscle fibers expressing MHC IIx and MHC IIb ( P < 0.05). For the gastrocnemius and plantaris, no significant changes in MHC isoform expression were observed. For the muscles analyzed, no alterations in MHC I or MHC IIa protein expression were observed. Enzymatic analysis of the gastrocnemius revealed a significant decrease in citrate synthase activity in SF vs. AEM control.


1994 ◽  
Vol 77 (3) ◽  
pp. 1128-1134 ◽  
Author(s):  
L. E. Gosselin ◽  
G. Brice ◽  
B. Carlson ◽  
Y. S. Prakash ◽  
G. C. Sieck

The acute period of unilateral diaphragm denervation (DNV) is associated with increases in cell mitotic activity, protein synthesis, and muscle fiber hypertrophy. Our purpose was to determine whether acute unilateral diaphragm DNV is associated with changes in muscle isometric contractile properties, cross-sectional area of different muscle fiber types, mitotic activity of muscle fiber satellite cells, and muscle fiber ultrastructural properties indicative of injury. Adult male Fischer 344 rats underwent a right phrenicotomy, and DNV and intact (INT) hemidiaphragms were studied 72 h later. DNV hemidiaphragm displayed a significant decline in maximal isometric force (8.7 vs. 24.3 N/cm2) and a prolonged time to peak twitch force (47.8 vs. 37.5 ms) and time to half relaxation (72.3 vs. 44.3 ms) compared with INT contralateral hemidiaphragm (P < 0.05). DNV resulted in a significant increase in cross-sectional area of types I (33%), IIa (35%), and IIb (28%) fibers relative to INT hemidiaphragm (P < 0.05). Satellite cell mitotic activity (assessed by incorporation of bromodeoxyuridine) was approximately 5.5 times greater in DNV than in INT muscle (DNV 25.0 +/- 3.8, INT 4.5 +/- 1.4 labeled satellite cell nuclei/1,000 nuclei; P < 0.05). Ultrastructural examination of electron micrographs revealed alterations in Z-line and sarcomeric structure indicative of muscle injury. Cellular infiltration and segmental necrosis were also noted in some fibers. We conclude that acute unilateral diaphragm DNV results in muscle fiber injury that induces satellite cell activation. We also speculate that the specific force decrement associated with DNV is at least partially the result of muscle injury.


1989 ◽  
Vol 67 (3) ◽  
pp. 945-953 ◽  
Author(s):  
S. C. Graham ◽  
R. R. Roy ◽  
E. O. Hauschka ◽  
V. R. Edgerton

Based on the current view that muscle fiber types reflect, at least to some degree, the probability of excitation of motor units in most normal movements, it was hypothesized that brief moderate periods of weight support would have little effect on a muscle that consists predominantly of high-threshold motor units. To test this hypothesis, the effects of 7 days of hindlimb suspension (HS) and HS plus intermittent weight support activity on the size and metabolic properties of individual fibers in the medial gastrocnemius (MG) were studied. HS resulted in a 40% decrease in the mean cross-sectional area of fibers that stain either dark or light for myosin adenosinetriphosphatase (ATPase) at an alkaline preincubation and are located in the deep region (i.e., close to the bone) of the MG. Dark ATPase fibers located in the superficial region were 17% smaller than controls (P greater than 0.05). Although the mean succinate and alpha-glycerophosphate dehydrogenase activities (optical density/min) per muscle fiber were not significantly (P greater than 0.05) affected by HS, it appeared that selected fibers of the deep MG region of HS rats had elevated enzyme activities. HS plus walking on a treadmill for 10 min every 6 h at 5 m/min and at a 19 degrees incline (total of 40 min/day) resulted in mean fiber cross-sectional area and enzyme activities nearer to control than the HS values. All adaptations were much less obvious in the fibers in a superficial (i.e., away from the bone) MG region.(ABSTRACT TRUNCATED AT 250 WORDS)


1999 ◽  
Vol 276 (2) ◽  
pp. R591-R596 ◽  
Author(s):  
H. Green ◽  
C. Goreham ◽  
J. Ouyang ◽  
M. Ball-Burnett ◽  
D. Ranney

To examine the hypothesis that increases in fiber cross-sectional area mediated by high-resistance training (HRT) would result in a decrease in fiber capillarization and oxidative potential, regardless of fiber type, we studied six untrained males (maximum oxygen consumption, 45.6 ± 2.3 ml ⋅ kg−1 ⋅ min−1; mean ± SE) participating in a 12-wk program designed to produce a progressive hypertrophy of the quadriceps muscle. The training sessions, which were conducted 3 times/wk, consisted of three sets of three exercises, each performed for 6–8 repetitions maximum (RM). Measurements of fiber-type distribution obtained from tissue extracted from the vastus lateralis at 0, 4, 7, and 12 wk indicated reductions ( P < 0.05) in type IIB fibers (15.1 ± 2.1% vs. 7.2 ± 1.3%) by 4 wk in the absence of changes in the other fiber types (types I, IIA, and IIAB). Training culminated in a 17% increase ( P < 0.05) in cross-sectional area by 12 wk with initial increases observed at 4 wk. The increase was independent of fiber type-specific changes. The number of capillaries in contact with each fiber type increased by 12 wk, whereas capillary contacts-to-fiber area ratios remained unchanged. In a defined cross-sectional field, HRT also increased the capillaries per fiber at 12 wk. Training failed to alter cellular oxidative potential, as measured by succinic dehydrogenase (SDH) activity, regardless of fiber type and training duration. It is concluded that modest hypertrophy induced by HRT does not compromise cellular tissue capillarization and oxidative potential regardless of fiber type.


2002 ◽  
Vol 16 (4) ◽  
pp. 209-213 ◽  
Author(s):  
Martin Jurlina ◽  
Ranko Mladina ◽  
Krsto Dawidowsky ◽  
Davor Ivanković ◽  
Zeljko Bumber ◽  
...  

Nasal symptoms often are inconsistent with rhinoscopic findings. However, the proper diagnosis and treatment of nasal pathology requires an objective evaluation of the narrow segments of the anterior part of the nasal cavities (minimal cross-sectional area [MCSA]). The problem is that the value of MCSA is not a unique parameter for the entire population, but rather it is a distinctive value for particular subject (or smaller groups of subjects). Consequently, there is a need for MCSA values to be standardized in a simple way that facilitates the comparison of results and the selection of our treatment regimens. We examined a group of 157 healthy subjects with normal nasal function. A statistically significant correlation was found between the body surface area and MCSA at the level of the nasal isthmus and the head of the inferior turbinate. The age of subjects was not found a statistically significant predictor for the value of MCSA. The results show that the expected value of MCSA can be calculated for every subject based on anthropometric data of height and weight.


1971 ◽  
Vol 15 (03) ◽  
pp. 231-245 ◽  
Author(s):  
C. M. Lee ◽  
J. N. Newman

A neutrally buoyant slender body of arbitrary sectional form, submerged beneath a free surface, is free to respond to an incident plane progressive wave system. The fluid is assumed inviscid, incompressible, homogeneous and infinitely deep. The first-order oscillatory motion of the body and the second-order time-average vertical force and pitching moment acting on the body are obtained in terms of Kochin's function. By use of slender-body theory for a deeply submerged body, the final expressions for the mean force and the moment are shown to depend on the longitudinal distribution of sectional area and added mass and on the amplitude and the frequency of the ambient surface waves. The magnitude of the mean force for various simple geometric cylinders is compared with that of a circular cylinder of equal cross-sectional area. The mean force on a nonaxisymmetric body is often approximated by replacing the section with circular profiles of equivalent cross-sectional area. A better scheme of approximation is presented, based on a simple way of estimating the two-dimensional added mass. It is expected that the effect of the cross-sectional geometry on mean vertical force and moment will be more significant when the body is very close to the free surface.


Author(s):  
Mohammad J. Izadi

A CFD study of a 3 Dimensional flow field around two bodies (Two Canopies of a Parachutes) as two bluff bodies in an incompressible fluid (Air) is modeled here. Formations of these two bodies are top-to-top (One on the top of the other) with respect to the center of each other. One canopy with a constant cross sectional area with a vent of air at its apex, and the other with a variable cross sectional area with no vent is studied here. Vertical distances of these two bodies are varied form zero to half, equal, double and triple radius of the body with a vent on it. The flow condition is considered to be 3-D, unsteady, turbulent, and incompressible. The vertical distances between the bluff bodies, cross sectional area, and also vent ratio of bluff bodies are varied here. The drag forces with static pressures around the two bodies are calculated. From the numerical results, it can be seen that, the drag coefficient is constant on the range of zero to twenty percent of the vent ratio and it decreases for higher vent ratios for when the upper parachute is smaller than the lower one, and it increases for when the upper parachute is larger than the lower one. Both Steady and Unsteady cases gave similar results especially when the distance between the canopies is increased.


2012 ◽  
Vol 303 (6) ◽  
pp. L519-L527 ◽  
Author(s):  
Vladimir T. Basic ◽  
Elsa Tadele ◽  
Ali Ateia Elmabsout ◽  
Hongwei Yao ◽  
Irfan Rahman ◽  
...  

Cigarette smoke (CS) is a well-established risk factor in the development of chronic obstructive pulmonary disease (COPD). In contrast, the extent to which CS exposure contributes to the development of the systemic manifestations of COPD, such as skeletal muscle dysfunction and wasting, remains largely unknown. Decreased skeletal muscle capillarization has been previously reported in early stages of COPD and might play an important role in the development of COPD-associated skeletal muscle abnormalities. To investigate the effects of chronic CS exposure on skeletal muscle capillarization and exercise tolerance, a mouse model of CS exposure was used. The 129/SvJ mice were exposed to CS for 6 mo, and the expression of putative elements of the hypoxia-angiogenic signaling cascade as well as muscle capillarization were studied. Additionally, functional tests assessing exercise tolerance/endurance were performed in mice. Compared with controls, skeletal muscles from CS-exposed mice exhibited significantly enhanced expression of von Hippel-Lindau tumor suppressor (VHL), ubiquitin-conjugating enzyme E2D1 (UBE2D1), and prolyl hydroxylase-2 (PHD2). In contrast, hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) expression was reduced. Furthermore, reduced muscle fiber cross-sectional area, decreased skeletal muscle capillarization, and reduced exercise tolerance were also observed in CS-exposed animals. Taken together, the current results provide evidence linking chronic CS exposure and induction of VHL expression in skeletal muscles leading toward impaired hypoxia-angiogenesis signal transduction, reduced muscle fiber cross-sectional area, and decreased exercise tolerance.


Author(s):  
Teet Seene ◽  
Maria Umnova ◽  
Priit Kaasik

The aim of our research was to examine whether there are differences in the morphology of neuromuscular junctions of different types of muscle fibers in rodents, and after their adaptation to six weeks endurance exercise training. After 5-day acclimation, Wistar rats were subjected to run with the speed 35 m/min during 6 week, 5 days per week and the training volume reached 60 min per day. Muscle samples for ultrastructural studies were fixed, dehydrated and embedded in Epon-812. Ultra-thin sections were cut from longitudinally and transversely oriented blocs, using 4 blocks from each animal. The area of axon terminals on fast- twitch fibers is 1.5 time large (p&lt;0.001) and the perimeter of terminals is 1.7 time large in comparison with slow- twitch oxidative fibers (p&lt;0.001) in control group. There are correlation between cross-sectional area of different muscle fibers and length of axon terminals (r=0.72), between cross-sectional area and with of axon terminal (r=-0.62), and between turnover rate of contractile proteins and length of axon terminal (r=0.75). Fast remodeling of synapse on oxidative and oxidative-glycolytic muscle fibers during endurance training seems to guarantees the intensive renewal of the structures of muscle fibers with higher oxidative capacity.


1994 ◽  
Vol 77 (1) ◽  
pp. 43-50 ◽  
Author(s):  
L. C. Maxwell ◽  
T. J. Kuehl ◽  
K. Meredith ◽  
D. R. Gerstmann ◽  
R. A. Delemos

We hypothesized that total parenteral nutrition accelerates growth and development of diaphragm muscle (DPH) in prematurely delivered baboons (140 days gestation). For 10 days after delivery by cesarean section, we administered parenteral nutrition containing glucose, electrolytes, and water or total parenteral nutrition containing lipids, amino acids, glucose, vitamins, and electrolytes. After 10 days of care, dorsolateral and ventrolateral (VL) costal DPH were sampled for histochemically determined mean fiber area (MFA) and fiber type percentages. We determined isolated bundle isometric tension (normalized for cross-sectional area), time to peak tension, half-relaxation time, force-frequency relationship, and fatigability. Neither sex nor nutritional treatment affected contractile properties. Differences among sexes and muscle sites, but not among nutritional treatments, were observed for histochemical characteristics. In females, the VL DPH had a lower percentage of type IIo fibers and a greater MFA of type IIc fibers than the dorsolateral DPH and a lower percentage of type IIo fibers and greater MFA of type IIc and IIo fibers than the VL DPH in males. Mean fiber cross-sectional area of VL DPH was significantly greater in females than males. The larger fibers in females than males suggest a stronger DPH in females. Earlier growth of type II fibers in females could contribute to a better outcome for female than male premature infants with hyaline membrane disease.


Sign in / Sign up

Export Citation Format

Share Document