Quantification of thoracic volumes by three-dimensional imaging

1987 ◽  
Vol 62 (2) ◽  
pp. 591-598 ◽  
Author(s):  
S. Krayer ◽  
K. Rehder ◽  
K. C. Beck ◽  
P. D. Cameron ◽  
E. P. Didier ◽  
...  

End-expiratory thoracic cavity volume (Vthx) was measured in eight volunteers lying supine by three-dimensional X-ray computed tomography using the Dynamic Spatial Reconstructor. Untrapped end-expiratory pulmonary gas volume at functional residual capacity (FRC) was determined by nitrogen clearance. Both measurements were done before and after induction of anesthesia-paralysis. After induction of anesthesia-paralysis, Vthx and FRC were consistently and significantly (P less than 0.01) reduced by 0.28 +/- 0.22 (SD) and 0.59 +/- 0.24 liter, respectively. The reduction of FRC was larger than the reduction of Vthx (delta Vthx) in six of the eight subjects, a finding suggesting that intrathoracic fluid (blood) plus trapped gas volume (Vtt) increased. Changes in Vthx were partitioned into volume changes from the thoracic rib cage (delta Vrc) and from shape and/or position changes of the diaphragm (delta Vdi). delta Vrc contributed significantly (0.17 +/- 0.15 liter, P less than 0.02) to delta Vthx, whereas delta Vdi contributed only in four of the eight subjects. We conclude that delta Vrc, delta Vdi, and delta Vtt contribute to the reduction of FRC after induction of anesthesia-paralysis in humans; the relative contribution of them varies among subjects.

1987 ◽  
Vol 62 (5) ◽  
pp. 1872-1877 ◽  
Author(s):  
T. A. Wilson ◽  
K. Rehder ◽  
S. Krayer ◽  
E. A. Hoffman ◽  
C. G. Whitney ◽  
...  

The three-dimensional coordinates of points in the ribs of two supine relaxed males, holding their breath at functional residual capacity (FRC) and with their glottis closed at total lung capacity (TLC), were obtained from volumetric X-ray computed tomographical images. The orientation of planes that best fit the data for each rib at each lung volume and the circular arcs that fit the points in the planes of the ribs were determined, and average values of these geometrical parameters for ribs 3–7 are reported. The planes of the ribs at TLC can be described as displaced from the planes at FRC by a rotation about an axis that passes near the spine. The pump handle and bucket handle components of rotation are 11 and 13 degrees, respectively, for rib 3 and both decrease with increasing rib number to 7 and 10 degrees at rib 7. The angles between the axes of rotation and the midplane are approximately 35 degrees for all 5 ribs. The radii of the circular arcs fit to the data at TLC are slightly larger than those at FRC, and this suggests that there is a small component of rotation normal to the plane of the rib.


2012 ◽  
Vol 450-451 ◽  
pp. 187-192 ◽  
Author(s):  
Jian De Han ◽  
Wei Sun ◽  
Gang Hua Pan

In this study three-dimensional X-ray computed tomography (X-ray CT) is used to investigate the testing results differences of cement paste and mortar before and after drying. It can be found that the mean gray values of paste and mortar before drying are bigger than after drying, and the impact of drying on cement paste is more serious than mortar. In addition, the porosity of non-drying cement paste and mortar is 1.10% and 0.43%, while that of drying cement paste and mortar is 1.55% and 0.70%, respectively. So, the porosity of paste and mortar markedly increases after drying process. The numbers of pores of paste and mortar sharply increase after drying process in particular between 0.01mm3 and 0.1mm3. The impact of drying on smaller pores is more serious than bigger pores.


2010 ◽  
Vol 163-167 ◽  
pp. 3061-3066 ◽  
Author(s):  
Jian De Han ◽  
Gang Hua Pan ◽  
Wei Sun ◽  
Cai Hui Wang ◽  
Hui Rong

X-ray computed tomography (XCT), a non-destructive test, was used to study three dimensional (3D) meso-defect volume distribution changes of cement paste due to carbonation. The 3D meso-defect volume from 0.02mm3 ~5mm3 before and after carbonation was analyzed through add-on modules of 3D defect analysis. The experimental results show that the meso-defect volume fraction before and after carbonation are 0.7685% and 2.44%, respectively. After carbonation, the smaller defect increased significantly than the bigger defect.


2021 ◽  
Author(s):  
Katherine A. Wolcott ◽  
Guillaume Chomicki ◽  
Yannick M. Staedler ◽  
Krystyna Wasylikowa ◽  
Mark Nesbitt ◽  
...  

Author(s):  
Theodore J. Heindel ◽  
Terrence C. Jensen ◽  
Joseph N. Gray

There are several methods available to visualize fluid flows when one has optical access. However, when optical access is limited to near the boundaries or not available at all, alternative visualization methods are required. This paper will describe flow visualization using an X-ray system that is capable of digital X-ray radiography, digital X-ray stereography, and digital X-ray computed tomography (CT). The unique X-ray flow visualization facility will be briefly described, and then flow visualization of various systems will be shown. Radiographs provide a two-dimensional density map of a three dimensional process or object. Radiographic images of various multiphase flows will be presented. When two X-ray sources and detectors simultaneously acquire images of the same process or object from different orientations, stereographic imaging can be completed; this type of imaging will be demonstrated by trickling water through packed columns and by absorbing water in a porous medium. Finally, local time-averaged phase distributions can be determined from X-ray computed tomography (CT) imaging, and this will be shown by comparing CT images from two different gas-liquid sparged columns.


2003 ◽  
Vol 8 (1) ◽  
pp. 2-6 ◽  
Author(s):  
Wolfgang H Stuppy ◽  
Jessica A Maisano ◽  
Matthew W Colbert ◽  
Paula J Rudall ◽  
Timothy B Rowe

2018 ◽  
Vol 139 ◽  
pp. 75-82 ◽  
Author(s):  
A.H. Galmed ◽  
A. du Plessis ◽  
S.G. le Roux ◽  
E. Hartnick ◽  
H. Von Bergmann ◽  
...  

Author(s):  
P Potamianos ◽  
A A Amis ◽  
A J Forester ◽  
M McGurk ◽  
M Bircher

The revision of an orthopaedic procedure can present surgeons with the challenge of a complex reconstructive process. Orthopaedic surgery can also face considerable challenges in cases presenting extensive primary injuries with multiple bone fragmentation, as well as in cases presenting bone deformities. Radiographs are used routinely for orthopaedic surgical planning, yet they provide inadequate information on the precise three-dimensional extent of bone defects. Three-dimensional reconstructions from X-ray computed tomography offer superior visualization but are not portable for consultation or readily available in the operating theatre for guidance during a procedure. A physical model manufactured from X-ray computed tomography data can offer surgeons a clear understanding of complex anatomical detail, by providing an intuitive physical relationship between patient and model. Rapid prototyping was used for the construction of an anatomical model in a case presenting with a complex shoulder injury. The model provided a definitive interpretation of joint pathology and enabled a full assessment of the degree of injury.


Sign in / Sign up

Export Citation Format

Share Document