Exercise-induced functional desensitization of canine cardiac beta-adrenergic receptors
To test the hypothesis that the high levels of endogenous catecholamines associated with strenuous exercise produce functional desensitization of cardiac beta-adrenergic receptors, we measured the bolus chronotropic dose of isoproterenol necessary to produce a 25-beats/min increase in heart rate (CD25) in the resting state and after the return of heart rate to resting levels after 60 min of treadmill running in 13 normal dogs. Immediately after exercise, 12 of 13 dogs were less sensitive to the chronotropic effects of beta-adrenergic receptor stimulation: mean CD25 increased from 1.16 +/- 0.17 to 3.50 +/- 0.98 micrograms (P less than 0.02). A similar reduction in isoproterenol sensitivity was evident regardless of whether testing was performed in the presence or absence of vagal blockade with atropine. By 3 h after exercise, CD25 had returned to the preexercise level, with no further change noted 24 h after exercise. There was no change in the CD25 when measured serially in three unexercised dogs. We conclude that a single bout of dynamic exercise is sufficient to produce a significantly decreased chronotropic responsiveness to isoproterenol. This phenomenon may represent an acute but transient desensitization of cardiac beta-adrenergic receptors.