Genioglossus and breathing responses to airway occlusion: effect of sleep and route of occlusion

1988 ◽  
Vol 64 (2) ◽  
pp. 543-549 ◽  
Author(s):  
F. G. Issa ◽  
P. Edwards ◽  
E. Szeto ◽  
D. Lauff ◽  
C. Sullivan

We examined the effect of sleep state on the response of genioglossus muscle (EMGgg) activity to total airway occlusion applied at 1) nasal (N) airway [and thus exposing the upper airway (UAW) to pressure changes] and 2) tracheal (T) airway (thus excluding UAW from pressure changes). A total of 233 tests were performed during wakefulness (W), 98 tests in slow-wave sleep (SWS), and 72 tests in rapid-eye-movement (REM) sleep. Prolongation of inspiratory time (TI) of the first occluded effort occurred in all tests irrespective of behavioral state, with the greatest increase seen in awake N tests. Nasal tests augmented EMGgg activity in the first occluded breath and produced a linear increase in EMGgg during occlusion. The EMGgg activity at any given time during nasal occlusion in SWS was less than that recorded during W tests. There was a marked reduction in EMGgg response to N occlusion during REM sleep. The EMGgg activity during awake T tests was significantly less than that of N tests at any given time during occlusion. There was no relationship between the level of EMGgg activity and asphyxia in T tests performed during SWS and REM sleep. Nasal tests decreased the force generated by the inspiratory pump muscles and the central drive to breathing compared with T tests. These results confirm the important role of the UAW in regulating breathing pattern and indicate that both immediate and progressive load-compensating responses during nasal occlusion are influenced by information arising from the UAW.

1986 ◽  
Vol 61 (6) ◽  
pp. 2148-2155 ◽  
Author(s):  
A. S. Goh ◽  
F. G. Issa ◽  
C. E. Sullivan

We measured the pressure within an isolated segment of the upper airway in three dogs during wakefulness (W), slow-wave sleep (SWS) and rapid-eye-movement (REM) sleep. Measurements were taken from a segment of the upper airway between the nares and midtrachea while the dog breathed through a tracheostoma. These pressure changes represented the sum of respiratory-related forces generated by all muscles of the upper airway. The mean base-line level of upper airway pressure (Pua) was -0.5 +/- 0.03 cmH2O during W, increased by a mean of 2.1 +/- 0.2 cmH2O during SWS, and was variable during REM sleep. The mean inspiratory-related phasic change in Pua was -1.2 +/- 0.1 cmH2O during wakefulness. During SWS, this phasic change in Pua decreased significantly to a mean of -0.9 +/- 0.1 cmH2O (P less than 0.05). During REM sleep, the phasic activity was extremely variable with periods in which there were no fluctuations in Pua and others with high swings in Pua. These data indicate that in dogs the sum of forces which dilate the upper airway during W decreases during SWS and REM sleep. The consistent coupling between inspiratory drive and upper airway dilatation during wakefulness persists in SWS, but is frequently uncoupled during REM sleep.


1990 ◽  
Vol 68 (6) ◽  
pp. 2564-2573 ◽  
Author(s):  
L. Plowman ◽  
D. C. Lauff ◽  
M. Berthon-Jones ◽  
C. E. Sullivan

We studied waking and genioglossus electromyographic (EMGgg) responses to oscillating pressure waves applied to the upper airways of three sleeping dogs. The dogs were previously prepared with a permanent side-hole tracheal stoma and were trained to sleep with a tight-fitting snout mask, hermetically sealed in place, while breathing through a cuffed endotracheal tube inserted through the tracheostomy. Sleep state was determined by behavioral, electroencephalographic, and electromyographic criteria, and EMGgg activity was measured using fine bipolar electrodes inserted directly into the muscle. Oscillatory pressure waves of 30 Hz and +/- 3 cmH2O (tested at atmospheric and subatmospheric upper airway pressures) were applied at the dog's nostrils or larynx, either constantly for a period of 1 min or in 0.5-s bursts. We found that the pressure stimulus had two major effects. First, it was a potentially powerful arousal-promoting stimulus. Arousal occurred in 78% of tests in slow-wave sleep (SWS) and 55% of tests in rapid-eye-movement (REM) sleep, with swallowing and sighing accompanying many of the arousals. Second, it produced an immediate and sustained augmentation of EMGgg, in wakefulness, SWS, and REM sleep. We conclude that oscillatory pressure waves in the upper airway, as found in snoring, produce reflex responses that help maintain upper airway patency during sleep. Loss of this type of reflex might contribute to the onset of obstructive sleep apnea in chronic snorers.


1987 ◽  
Vol 62 (5) ◽  
pp. 1832-1836 ◽  
Author(s):  
F. G. Issa ◽  
S. G. McNamara ◽  
C. E. Sullivan

Previous studies have shown that the arousal threshold to hypoxia, hypercapnia, and tracheal occlusions is greatly depressed in rapid-eye-movement (REM) sleep compared with slow-wave sleep (SWS). The aim of this study was to compare the arousal thresholds in SWS and REM sleep in response to an upper airway pressure stimulus. We compared the waking responses to tracheal (T) vs. nasal (N) occlusion in four unanesthetized, naturally sleeping dogs. The dogs either breathed through a tracheal fistula or through the snout using a fiberglass mask. A total of 295 T and 160 N occlusion tests were performed in SWS and REM sleep. The mean time to arousal during N and T tests was variable in the same dog and among the dogs. The mean time to arousal in SWS-tracheal occlusion was longer than that in N tests in only two of the four dogs. The total number of tests inducing arousal within the first 15 s of SWS-nasal occlusion tests was significantly more than that of T tests (N: 47%; T: 27%). There was a marked depression of arousal within the initial 15 s of REM sleep in T tests compared with N tests (N: 21%; T: 0%). The frequency of early arousals in REM tests was less than that of SWS for both N and T tests. The early arousal in N occlusion is in sharp contrast to the well-described depressed arousal responses to hypoxia, hypercapnia, and asphyxia. This pattern of arousal suggests that the upper airway mechanoreceptors may play an important role in the induction of an early arousal from nasal occlusion.


1979 ◽  
Vol 47 (6) ◽  
pp. 1304-1310 ◽  
Author(s):  
C. E. Sullivan ◽  
E. Murphy ◽  
L. F. Kozar ◽  
E. A. Phillipson

Ventilatory responses to CO2 and to lung inflation were compared in four dogs during tonic and phasic segments of rapid-eye-movement (REM) sleep. Phasic REM sleep (P-REM) was identified by the presence of bursts of rapid eye movements, visible muscle twitchings, and frequent phasic discharges in the nuchal electromyogram. These features were absent during tonic REM sleep (T-REM). During P-REM the response of minute volume of ventilation (VI) to progressive hypercapnia (0.58 +/- 0.19 (l/min)/Torr, mean +/- SE) was significantly less than in slow-wave sleep (SWS) (1.40 +/- 0.14; P less than 0.05). In contrast, during T-REM the response (1.48 +/- 0.19) was similar to that in SWS. Similarly, during P-REM the duration of apnea (5.9 +/- 1.5 s) elicited by sustained inflation of the lungs with 1.0 liter of air, was significantly shorter than in SWS (25.8 +/- 0.8); in contrast, during T-REM the duration of apnea (17.8 +/- 3.6) was similar to that in SWS. The results indicate that previously described decreases in VI responses to CO2 and apneic responses to lung inflation during P-REM, compared to SWS, are related to the phasic phenomena of REM sleep, rather than to the REM sleep state per se.


1979 ◽  
Vol 46 (5) ◽  
pp. 998-1002 ◽  
Author(s):  
G. G. Haddad ◽  
R. A. Epstein ◽  
M. A. Epstein ◽  
H. L. Leistner ◽  
P. A. Marino ◽  
...  

Noninvasive studies of ventilation and ventilatory pattern were performed serially in 15 normal infants in the first 4 mo of life during REM and quiet sleep with the barometric method. We measured tidal volume (VT), total respiratory cycle time (Ttot), inspiratory time (Ti), expiratory time (TE), mean inspiratory flow (VT/TI), and respiratory “duty cycle” (TI/Ttot). Vt, Ttot, TI, TE, VT/TI, and VT/Ttot but not TI/Ttot increased with age. In all age groups, Ttot, TI, and TE but not VT/TI were greater in quiet than in REM sleep. In the first 2 mo of life, VT was greater in quiet than in REM sleep; in the older infants, VT/Ttot was smaller in quiet than in REM sleep. TI/Ttot was not dependent on sleep state. Thus, because VT/Ttot = VT/TI X TI/Ttot, the increase in VT/Ttot with age results from an increase in mean inspiratory flow rather than from changes in respiratory “duty cycle”. Further, the “on-switching” as well as the “off-switching” of inspiratory activity depends on sleep state.


SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A5-A5
Author(s):  
O Lyamin ◽  
V Borshenko ◽  
A Bakhchina ◽  
J Siegel

Abstract Introduction It was reported that adult ostriches displayed the longest REM sleep episodes (up to 5 min) and more REM sleep (24% of the nighttime) than any other avian species. In all mammals studied so far REM sleep predominates at early age suggesting it promotes development of the brain. The aim of this study was to examine REM sleep in ostrich chicks. Methods EEG, electrooculogram and electromyogram of the neck muscles were recorded in 4 chronically implanted 2–3 month old ostrich chicks over 3 nights. The last night was scored in 4-sec epochs for waking, nonREM and REM sleep. Results NonREM sleep and REM sleep in the ostrich chicks occurred when they were sitting or lying with the head held above the ground or rested on the ground. REM sleep was characterized by distinct rapid eye movements, head drops and eye closure. The amplitude of the EEG during episodes of REM sleep ranged between low voltage EEG, as recorded during quiet waking and high voltage slow waves, as recorded during nonREM sleep EEG. The ostrich chicks spent on average 70.7 + 2.2% of the nighttime in nonREM sleep and 12.3 + 3.9% in REM sleep. The episodes of REM sleep lasted on average 9 + 1 sec and ranged between 4 and 36 sec. Conclusion Similar to adult birds, 2–3 mo old ostrich chicks displayed a “mixed” sleep state which has features of both slow wave sleep / nonREM and REM sleep, as we have described in the platypus and echidna. An unexpected result of this study is the total amount and duration of episodes of REM were considerably smaller than has been reported in adult ostriches. More studies need to be done on the developmental and environmental determinants of REM sleep in the ostrich. Support The Russian Foundation for Basic Research (18-04-01252) and HL148574


2017 ◽  
Vol 89 (4) ◽  
pp. 249-261 ◽  
Author(s):  
Ryan K. Tisdale ◽  
Alexei L. Vyssotski ◽  
John A. Lesku ◽  
Niels C. Rattenborg

The functions of slow wave sleep (SWS) and rapid eye movement (REM) sleep, distinct sleep substates present in both mammals and birds, remain unresolved. One approach to gaining insight into their function is to trace the evolution of these states through examining sleep in as many taxonomic groups as possible. The mammalian and avian clades are each composed of two extant groups, i.e., the monotremes (echidna and platypus) and therian (marsupial and eutherian [or placental]) mammals, and Palaeognaths (cassowaries, emus, kiwi, ostriches, rheas, and tinamous) and Neognaths (all other birds) among birds. Previous electrophysiological studies of monotremes and ostriches have identified a unique “mixed” sleep state combining features of SWS and REM sleep unlike the well-delineated sleep states observed in all therian mammals and Neognath birds. In the platypus this state is characterized by periods of REM sleep-related myoclonic twitching, relaxed skeletal musculature, and rapid eye movements, occurring in conjunction with SWS-related slow waves in the forebrain electroencephalogram (EEG). A similar mixed state was also observed in ostriches; although in addition to occurring during periods with EEG slow waves, reduced muscle tone and rapid eye movements also occurred in conjunction with EEG activation, a pattern typical of REM sleep in Neognath birds. Collectively, these studies suggested that REM sleep occurring exclusively as an integrated state with forebrain activation might have evolved independently in the therian and Neognath lineages. To test this hypothesis, we examined sleep in the elegant crested tinamou (Eudromia elegans), a small Palaeognath bird that more closely resembles Neognath birds in size and their ability to fly. A 24-h period was scored for sleep state based on electrophysiology and behavior. Unlike ostriches, but like all of the Neognath birds examined, all indicators of REM sleep usually occurred in conjunction with forebrain activation in tinamous. The absence of a mixed REM sleep state in tinamous calls into question the idea that this state is primitive among Palaeognath birds and therefore birds in general.


1978 ◽  
Vol 45 (5) ◽  
pp. 681-689 ◽  
Author(s):  
C. E. Sullivan ◽  
E. Murphy ◽  
L. F. Kozar ◽  
E. A. Phillipson

We studied waking and ventilatory responses to laryngeal stimulation during sleep in three dogs. The dogs breathed through an endotracheal tube inserted caudally into the trachea through a tracheostomy. Laryngeal stimulation was produced either by inflating a small balloon that was positioned in the rostral tracheal segment, or by squirting water onto the larynx through a catheter inserted through the tracheostomy. Airflow was measured with a pneumotachograph, and sleep state was determined by behavioral, electroencephalographic, and electromyographic criteria. We found that the degree of laryngeal stimulation required to produce arousal and coughing was higher in rapid-eye-movement (REM) sleep than in slow-wave sleep (SWS). Stimuli that failed to cause arousal from SWS often produced a single expiratory effort, or brief apnea (1--2 s) and bradycardia. In contrast, during REM sleep subarousal stimuli often resulted in prolonged apnea (greater than 10 s) and marked bradycardia. We conclude that during REM sleep arousal responses to laryngeal stimulation are depressed, but ventilatory and cardiac responses are intact.


1985 ◽  
Vol 59 (3) ◽  
pp. 847-852 ◽  
Author(s):  
W. A. Carlo ◽  
M. J. Miller ◽  
R. J. Martin

The effect of end-expiratory occlusion on respiratory muscle activity was studied in 10 unsedated preterm infants during sleep. Electromyograms (EMG) of the upper airway were recorded from surface electrodes placed over the submental (SM) area; diaphragm (DIA) EMGs were obtained with identical electrodes over the right subcostal margin. Phasic SM EMG accompanied 56 +/- 36% of breaths during spontaneous breathing and increased to 80 +/- 26% (P less than 0.05) on the first inspiratory effort after occlusion. Occlusion increased peak amplitude (P less than 0.001) and total duration (P less than 0.005) of the SM EMG without significant changes in its initial rate of rise. In contrast, only the total duration of the DIA EMG increased (P less than 0.005) during occlusion. Inspiratory time increased from 470 +/- 120 to 720 +/- 210 ms (P less than 0.001) during the first occluded effort, but expiratory time did not change. With sustained occlusion, peak amplitude of the SM EMG progressively increased, but DIA EMG only significantly increased by the third occluded effort. Pharyngeal patency was invariably maintained throughout the induced airway occlusions. Sharp bursts of SM EMG activity coincided with resolution of spontaneous obstructive apneic episodes in four infants. The immediate increase in SM EMG associated with airway occlusion may be a mechanism that prevents the development of obstructive apnea.


Sign in / Sign up

Export Citation Format

Share Document