scholarly journals 0012 REM Sleep in Ostrich Chicks

SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A5-A5
Author(s):  
O Lyamin ◽  
V Borshenko ◽  
A Bakhchina ◽  
J Siegel

Abstract Introduction It was reported that adult ostriches displayed the longest REM sleep episodes (up to 5 min) and more REM sleep (24% of the nighttime) than any other avian species. In all mammals studied so far REM sleep predominates at early age suggesting it promotes development of the brain. The aim of this study was to examine REM sleep in ostrich chicks. Methods EEG, electrooculogram and electromyogram of the neck muscles were recorded in 4 chronically implanted 2–3 month old ostrich chicks over 3 nights. The last night was scored in 4-sec epochs for waking, nonREM and REM sleep. Results NonREM sleep and REM sleep in the ostrich chicks occurred when they were sitting or lying with the head held above the ground or rested on the ground. REM sleep was characterized by distinct rapid eye movements, head drops and eye closure. The amplitude of the EEG during episodes of REM sleep ranged between low voltage EEG, as recorded during quiet waking and high voltage slow waves, as recorded during nonREM sleep EEG. The ostrich chicks spent on average 70.7 + 2.2% of the nighttime in nonREM sleep and 12.3 + 3.9% in REM sleep. The episodes of REM sleep lasted on average 9 + 1 sec and ranged between 4 and 36 sec. Conclusion Similar to adult birds, 2–3 mo old ostrich chicks displayed a “mixed” sleep state which has features of both slow wave sleep / nonREM and REM sleep, as we have described in the platypus and echidna. An unexpected result of this study is the total amount and duration of episodes of REM were considerably smaller than has been reported in adult ostriches. More studies need to be done on the developmental and environmental determinants of REM sleep in the ostrich. Support The Russian Foundation for Basic Research (18-04-01252) and HL148574

1979 ◽  
Vol 47 (6) ◽  
pp. 1304-1310 ◽  
Author(s):  
C. E. Sullivan ◽  
E. Murphy ◽  
L. F. Kozar ◽  
E. A. Phillipson

Ventilatory responses to CO2 and to lung inflation were compared in four dogs during tonic and phasic segments of rapid-eye-movement (REM) sleep. Phasic REM sleep (P-REM) was identified by the presence of bursts of rapid eye movements, visible muscle twitchings, and frequent phasic discharges in the nuchal electromyogram. These features were absent during tonic REM sleep (T-REM). During P-REM the response of minute volume of ventilation (VI) to progressive hypercapnia (0.58 +/- 0.19 (l/min)/Torr, mean +/- SE) was significantly less than in slow-wave sleep (SWS) (1.40 +/- 0.14; P less than 0.05). In contrast, during T-REM the response (1.48 +/- 0.19) was similar to that in SWS. Similarly, during P-REM the duration of apnea (5.9 +/- 1.5 s) elicited by sustained inflation of the lungs with 1.0 liter of air, was significantly shorter than in SWS (25.8 +/- 0.8); in contrast, during T-REM the duration of apnea (17.8 +/- 3.6) was similar to that in SWS. The results indicate that previously described decreases in VI responses to CO2 and apneic responses to lung inflation during P-REM, compared to SWS, are related to the phasic phenomena of REM sleep, rather than to the REM sleep state per se.


2019 ◽  
pp. 124-149 ◽  
Author(s):  
Robert Stickgold

Rapid eye movement (REM) sleep is a stage of sleep that evolved in part to provide a privileged time in each day when the brain is disconnected from sensory input and freed of intentional, directed thought. The neurochemistry and neurophysiology of the brain during REM sleep is optimized for the exploration of normally ignored connections and associations within the brain’s vast repertoire of stored information. This includes changes in the activity of dorsolateral prefrontal, anterior cingulate, and medial orbital frontal cortices and the hippocampus, and reductions in norepinephrine and increases in acetylcholine in the cortex. This exploration of normally weak associations is critical to the creative process, and REM sleep can thus be considered a period of unbridled creativity. Much of this creative process is reflected in the content of dreams. Even without waking dream recall, changes within associative networks produced by the brain mechanisms of dream construction can leave these brain networks—and the individual—primed for reactivation at a later time, leading to the “discovery” of creative insights. Some, but not all, of these brain changes are also seen during periods of quiet rest with activation of the default mode network (DMN). When active, this network can likewise provide a state of enhanced creativity. Nevertheless, REM sleep and dreaming provide a protected two hours every day when creative processes run at full speed.


2000 ◽  
Vol 23 (6) ◽  
pp. 911-912 ◽  
Author(s):  
Alexander A. Borbély ◽  
Lutz Wittmann

The advent of functional imaging has reinforced the attempts to define dreaming as a sleep state-dependent phenomenon. PET scans revealed major differences between nonREM sleep and REM sleep. However, because dreaming occurs throughout sleep, the common features of the two sleep states, rather than the differences, could help define the prerequisite for the occurrence of dreams.[Hobson et al.; Nielsen; Solms; Revonsuo; Vertes & Eastman]


2017 ◽  
Vol 89 (4) ◽  
pp. 249-261 ◽  
Author(s):  
Ryan K. Tisdale ◽  
Alexei L. Vyssotski ◽  
John A. Lesku ◽  
Niels C. Rattenborg

The functions of slow wave sleep (SWS) and rapid eye movement (REM) sleep, distinct sleep substates present in both mammals and birds, remain unresolved. One approach to gaining insight into their function is to trace the evolution of these states through examining sleep in as many taxonomic groups as possible. The mammalian and avian clades are each composed of two extant groups, i.e., the monotremes (echidna and platypus) and therian (marsupial and eutherian [or placental]) mammals, and Palaeognaths (cassowaries, emus, kiwi, ostriches, rheas, and tinamous) and Neognaths (all other birds) among birds. Previous electrophysiological studies of monotremes and ostriches have identified a unique “mixed” sleep state combining features of SWS and REM sleep unlike the well-delineated sleep states observed in all therian mammals and Neognath birds. In the platypus this state is characterized by periods of REM sleep-related myoclonic twitching, relaxed skeletal musculature, and rapid eye movements, occurring in conjunction with SWS-related slow waves in the forebrain electroencephalogram (EEG). A similar mixed state was also observed in ostriches; although in addition to occurring during periods with EEG slow waves, reduced muscle tone and rapid eye movements also occurred in conjunction with EEG activation, a pattern typical of REM sleep in Neognath birds. Collectively, these studies suggested that REM sleep occurring exclusively as an integrated state with forebrain activation might have evolved independently in the therian and Neognath lineages. To test this hypothesis, we examined sleep in the elegant crested tinamou (Eudromia elegans), a small Palaeognath bird that more closely resembles Neognath birds in size and their ability to fly. A 24-h period was scored for sleep state based on electrophysiology and behavior. Unlike ostriches, but like all of the Neognath birds examined, all indicators of REM sleep usually occurred in conjunction with forebrain activation in tinamous. The absence of a mixed REM sleep state in tinamous calls into question the idea that this state is primitive among Palaeognath birds and therefore birds in general.


1978 ◽  
Vol 45 (5) ◽  
pp. 681-689 ◽  
Author(s):  
C. E. Sullivan ◽  
E. Murphy ◽  
L. F. Kozar ◽  
E. A. Phillipson

We studied waking and ventilatory responses to laryngeal stimulation during sleep in three dogs. The dogs breathed through an endotracheal tube inserted caudally into the trachea through a tracheostomy. Laryngeal stimulation was produced either by inflating a small balloon that was positioned in the rostral tracheal segment, or by squirting water onto the larynx through a catheter inserted through the tracheostomy. Airflow was measured with a pneumotachograph, and sleep state was determined by behavioral, electroencephalographic, and electromyographic criteria. We found that the degree of laryngeal stimulation required to produce arousal and coughing was higher in rapid-eye-movement (REM) sleep than in slow-wave sleep (SWS). Stimuli that failed to cause arousal from SWS often produced a single expiratory effort, or brief apnea (1--2 s) and bradycardia. In contrast, during REM sleep subarousal stimuli often resulted in prolonged apnea (greater than 10 s) and marked bradycardia. We conclude that during REM sleep arousal responses to laryngeal stimulation are depressed, but ventilatory and cardiac responses are intact.


1988 ◽  
Vol 64 (2) ◽  
pp. 543-549 ◽  
Author(s):  
F. G. Issa ◽  
P. Edwards ◽  
E. Szeto ◽  
D. Lauff ◽  
C. Sullivan

We examined the effect of sleep state on the response of genioglossus muscle (EMGgg) activity to total airway occlusion applied at 1) nasal (N) airway [and thus exposing the upper airway (UAW) to pressure changes] and 2) tracheal (T) airway (thus excluding UAW from pressure changes). A total of 233 tests were performed during wakefulness (W), 98 tests in slow-wave sleep (SWS), and 72 tests in rapid-eye-movement (REM) sleep. Prolongation of inspiratory time (TI) of the first occluded effort occurred in all tests irrespective of behavioral state, with the greatest increase seen in awake N tests. Nasal tests augmented EMGgg activity in the first occluded breath and produced a linear increase in EMGgg during occlusion. The EMGgg activity at any given time during nasal occlusion in SWS was less than that recorded during W tests. There was a marked reduction in EMGgg response to N occlusion during REM sleep. The EMGgg activity during awake T tests was significantly less than that of N tests at any given time during occlusion. There was no relationship between the level of EMGgg activity and asphyxia in T tests performed during SWS and REM sleep. Nasal tests decreased the force generated by the inspiratory pump muscles and the central drive to breathing compared with T tests. These results confirm the important role of the UAW in regulating breathing pattern and indicate that both immediate and progressive load-compensating responses during nasal occlusion are influenced by information arising from the UAW.


2019 ◽  
Author(s):  
Atul Pandey ◽  
Ryan Oliver ◽  
Santosh K Kar

AbstractSleep is essential for the survival of most living beings. Numerous researchers have identified a series of genes that are thought to regulate “sleep-state” or the “deprived state”. As sleep has significant effect on physiology, we believe that lack of sleep or particularly REM sleep for a prolonged period would have a profound impact on various body tissues. Therefore, using microarray method, we sought to determine which genes and processes are affected in the brain and liver of rats following 9 days of REM sleep deprivation. Our findings showed that REM sleep deprivation affected a total of 652 genes in the brain and 426 genes in the liver. Only 23 genes were affected commonly, 10 oppositely and 13 similarly across brain and liver tissue. Our results suggest that 9-day REM sleep deprivation differentially affects genes and processes in the brain and liver of rats.Highlights of the study➢Gene expression profile of brain and liver tissues of rats was analyzed using microarray technique following 9 days of REM Sleep deprivation.➢Many of the genes involved in essential physiological processes, such as protein synthesis and neuronal metabolism are affected differently in the brain and liver tissue of rats after 9-day REM sleep deprivation.


2001 ◽  
Vol 280 (3) ◽  
pp. R752-R759 ◽  
Author(s):  
Subimal Datta ◽  
Eric E. Spoley ◽  
Elissa H. Patterson

The aim of this study was to test the hypothesis that the cells in the brain stem pedunculopontine tegmentum (PPT) are critically involved in the normal regulation of wakefulness and rapid eye movement (REM) sleep. To test this hypothesis, one of four different doses of the excitatory amino acid l-glutamate (15, 30, 60, and 90 ng) or saline (control vehicle) was microinjected unilaterally into the PPT while the effects on wakefulness and sleep were quantified in freely moving chronically instrumented rats. All microinjections were made during wakefulness and were followed by 6 h of polygraphic recording. Microinjection of 15- ng (0.08 nmol) and 30-ng (0.16 nmol) doses ofl-glutamate into the PPT increased the total amount of REM sleep. Both doses of l-glutamate increased REM sleep at the expense of slow-wave sleep (SWS) but not wakefulness. Interestingly, the 60-ng (0.32 nmol) dose of l-glutamate increased both REM sleep and wakefulness. The total increase in REM sleep after the 60-ng dose of l-glutamate was significantly less than the increase from the 30-ng dose. The 90-ng (0.48 nmol) dose ofl-glutamate kept animals awake for 2–3 h by eliminating both SWS and REM sleep. These results show that thel-glutamate microinjection into the PPT can increase wakefulness and/or REM sleep depending on the dosage. These findings support the hypothesis that excitation of the PPT cells is causal to the generation of wakefulness and REM sleep in the rat. In addition, the results of this study led to the identification of the PPT dosage of l-glutamate that optimally induces wakefulness and REM sleep. The knowledge of this optimal dose will be useful in future studies investigating the second messenger systems involved in the regulation of wakefulness and REM sleep.


2005 ◽  
Vol 25 (8) ◽  
pp. 990-997 ◽  
Author(s):  
Alessandro Silvani ◽  
Valentina Asti ◽  
Chiara Berteotti ◽  
Tijana Bojic ◽  
Tullia Cianci ◽  
...  

We compared blood-brain barrier (BBB) permeability to glucose between quiet wakefulness and rapid-eye-movement (REM) sleep to assess whether changes in BBB permeability play a role in coupling glucose supply to the physiologic metabolic needs of the brain. Male Sprague-Dawley rats were prepared with electrodes for wake-sleep state scoring and with arterial and venous catheters. Using the single-pass, dual-label indicator method, unidirectional glucose extraction by the brain and cerebral blood flow (CBF) were simultaneously measured during states of quiet wakefulness ( n = 12) or REM sleep ( n = 7). The product of BBB surface area and permeability to glucose (PS product) was computed in each state. During REM sleep, CBF significantly exceeded that during quiet wakefulness in all regions but the cerebellum, whereas the difference in the PS product between quiet wakefulness and REM sleep was not statistically significant in any brain region. In the brain as a whole, CBF significantly increased 29% from quiet wakefulness to REM sleep, while a nonsignificant 0.8% increase occurred in the PS product. During REM sleep, the increase in CBF indicates a higher rate of brain glucose consumption than in quiet wakefulness, given the tight flow-metabolism coupling in the brain. Therefore, these data show that modulation of BBB permeability to glucose is not a mechanism that provides ‘energy on demand’ during the physiologic brain activation characterising REM sleep.


1997 ◽  
Vol 77 (6) ◽  
pp. 2975-2988 ◽  
Author(s):  
Subimal Datta ◽  
Donald F. Siwek

Datta, Subimal and Donald F. Siwek. Excitation of the brain stem pedunculopontine tegmentum cholinergic cells induces wakefulness and REM sleep. J. Neurophysiol. 77: 2975–2988, 1997. Considerable evidence suggests that brain stem pedunculopontine tegmentum (PPT) cholinergic cells are critically involved in the normal regulation of wakefulness and rapid eye movement (REM) sleep. However, much of this evidence comes from indirect studies. Thus, although involvement of PPT cholinergic neurons has been suggested by numerous investigations, the excitation of PPT cholinergic neurons causal to the behavioral state of wakefulness and REM sleep has never been directly demonstrated. In the present study we examined the effects of three different levels of activation of PPT cholinergic cells in wakefulness and sleep behavior. The effects of glutamate on the activity of PPT cholinergic cells were studied by microinjection of one of the three different doses of l-glutamate (0.3, 1.0, and 3.0 μg) or saline (vehicle control) into the PPT cholinergic cell compartment while quantifying the effects on wakefulness and sleep in free moving chronically instrumented cats. All microinjections were made during wakefulness and were followed by 4 h of recording. Polygraphic records were scored for wakefulness, slow-wave sleep states 1 and 2, slow-wave sleep with pontogeniculooccipital waves, and REM sleep. Dependent variables quantified after each microinjection included the percentage of recording time spent in each state, the latency to onset of REM sleep, the number of episodes per hour for REM sleep, and the duration of each REM sleep episode. A total of 48 microinjections was made into 12 PPT sites in six cats. Microinjection of 0.3- and 1.0-μg doses of l-glutamate into the cholinergic cell compartment of the PPT increased the total amount of REM sleep in a dose-dependent manner. Both doses of l-glutamate increased REM sleep at the expense of slow-wave sleep but not wakefulness. Microinjection of 3.0 μg l-glutamate kept animals awake for 2–3 h by eliminating slow-wave and REM sleep. The results show that the microinjection of the excitatory amino acid l-glutamate into the PPT cholinergic cell compartments can increase wakefulness and/or REM sleep depending on the l-glutamate dosage. These findings unambiguously confirm the hypothesis that the excitation of the PPT cholinergic cells is causal to the generation of wakefulness and REM sleep.


Sign in / Sign up

Export Citation Format

Share Document