Respiratory mechanics in adult rats hypercapnic in the neonatal period

1990 ◽  
Vol 68 (6) ◽  
pp. 2274-2279 ◽  
Author(s):  
R. Rezzonico ◽  
R. D. Gleed ◽  
J. P. Mortola

Because chronic hypoxia in the neonatal period has long-term effects on the mechanical properties of the respiratory system (S. Okubo and J. P. Mortola, J. Appl. Physiol. 66: 1772-1778, 1989), we asked whether similar effects would occur after neonatal exposure to hypercapnia. Three groups of rats were used. The first was exposed to 7% CO2 in normoxia from day 1 to 7 after birth and then returned to normocapnia (NB-CO2). The second was exposed to the same level and duration of hypercapnia from day 36 to 42, i.e., approximately 2 wk after weaning (AD-CO2). The third was raised in normoxia and normocapnia (control). At approximately 50 days, i.e., 1-2 wk after puberty, the passive mechanical properties of the respiratory system, lung, and chest were measured during artificial ventilation in the anesthetized and paralyzed animal. No differences were observed between AD-CO2 and control. NB-CO2 had higher compliance of the lung (approximately +40%) and respiratory system (+32%) than control or AD-CO2. Average values of resistance of the total respiratory system, lung, and chest wall were consistently lower in NB-CO2 than in control and AD-CO2, although the magnitude and statistical significance of the decrease depended on the method of measurement. In a separate group of NB-CO2, lung compliance was measured during spontaneous breathing, and it averaged 34% more than in control. The exponential constant of the deflation quasi-static pressure-volume curve of the liquid-filled lungs was also significantly higher than in control.(ABSTRACT TRUNCATED AT 250 WORDS)

1983 ◽  
Vol 54 (5) ◽  
pp. 1229-1235 ◽  
Author(s):  
J. P. Mortola

Static and dynamic properties of the respiratory system have been studied in anesthetized, tracheostomized newborns of six species, ranging in size from rats to piglets. Respiratory system compliance (Crs), total resistance of respiratory system (Rrs), and expiratory time constant (tau) have been measured in the paralyzed passively ventilated animals. Crs is found to be proportional to body weight (BW0.80) and Rrs to BW-0.75; tau is independent of body size, the shortest value being in kittens and guinea pigs and a value of about 0.14 s in the other species. Including the upper airway resistance, tau becomes approximately 0.22 s. This value is similar to the expiratory time of the fastest breathing species; therefore in the smallest species the high breathing rate can be regarded as a mechanism to raise end-expiratory level. On a few occasions, dynamic lung compliance and pulmonary resistance, measured in spontaneously breathing kittens, puppies, and piglets were, respectively, smaller and larger than Crs and Rrs, suggesting that the hysteresis of the pressure-volume curve may be substantial. Rrs was almost linear within the volume and flow range investigated, with the Rohrer's constant K2 always being less than 2.5% of K1. The Reynolds number increases with body size (alpha BW0.51) more than is predictable from the changes in tracheal diameter, since the tracheal flow velocity is not an interspecific constant.


1982 ◽  
Vol 53 (5) ◽  
pp. 1071-1079 ◽  
Author(s):  
W. J. Lamm ◽  
J. R. Hildebrandt ◽  
J. Hildebrandt ◽  
Y. L. Lai

Functional residual capacity (FRC), tidal volume (VT), and frequency (f) were compared in 23 rats while either awake and unrestrained or anesthetized. FRC was determined from gas compression with closed airway inside a cone-shaped body plethysmograph. In the awake state (mean +/- SD), FRC was 1.02 +/- 0.22 ml/100 g, VT was 0.38 +/- 0.06 ml/100 g, and f was 142 +/- 22 breaths/min. During anesthesia, FRC decreased (P less than 0.01) to 52.9% of awake values, VT increased (P less than 0.01) to 147.4%, and f decreased (P less than 0.01) to 71.8%, leaving minute ventilation almost unchanged. An additional seven rats were used to examine postural effects on FRC during anesthesia, and in another seven animals pleural pressure changes were monitored. Dynamic lung compliance (0.80 ml . kg-1 X cmH2O-1) was not altered by anesthesia, but the pressure-volume curve was shifted 6 cmH2O higher. Thoracic compression, followed by a time-dependent effect of volume history, may account for the major change in FRC. The remainder of the decrease in FRC may be due to lower breathing frequency, loss of inspiratory muscle activity, and/or less airway resistance after anesthesia. Peak diaphragmatic electromyogram per unit VT was shown to increase almost linearly with FRC, indicating that diaphragmatic efficiency was decreased as lung volume was elevated. Functional residual capacity (FRC), tidal volume (VT), and frequency (f) were compared in 23 rats while either awake and unrestrained or anesthetized. FRC was determined from gas compression with closed airway inside a cone-shaped body plethysmograph. In the awake state (mean +/- SD), FRC was 1.02 +/- 0.22 ml/100 g, VT was 0.38 +/- 0.06 ml/100 g, and f was 142 +/- 22 breaths/min. During anesthesia, FRC decreased (P less than 0.01) to 52.9% of awake values, VT increased (P less than 0.01) to 147.4%, and f decreased (P less than 0.01) to 71.8%, leaving minute ventilation almost unchanged. An additional seven rats were used to examine postural effects on FRC during anesthesia, and in another seven animals pleural pressure changes were monitored. Dynamic lung compliance (0.80 ml . kg-1 X cmH2O-1) was not altered by anesthesia, but the pressure-volume curve was shifted 6 cmH2O higher. Thoracic compression, followed by a time-dependent effect of volume history, may account for the major change in FRC. The remainder of the decrease in FRC may be due to lower breathing frequency, loss of inspiratory muscle activity, and/or less airway resistance after anesthesia. Peak diaphragmatic electromyogram per unit VT was shown to increase almost linearly with FRC, indicating that diaphragmatic efficiency was decreased as lung volume was elevated. Functional residual capacity (FRC), tidal volume (VT), and frequency (f) were compared in 23 rats while either awake and unrestrained or anesthetized. FRC was determined from gas compression with closed airway inside a cone-shaped body plethysmograph. In the awake state (mean +/- SD), FRC was 1.02 +/- 0.22 ml/100 g, VT was 0.38 +/- 0.06 ml/100 g, and f was 142 +/- 22 breaths/min. During anesthesia, FRC decreased (P less than 0.01) to 52.9% of awake values, VT increased (P less than 0.01) to 147.4%, and f decreased (P less than 0.01) to 71.8%, leaving minute ventilation almost unchanged. An additional seven rats were used to examine postural effects on FRC during anesthesia, and in another seven animals pleural pressure changes were monitored. Dynamic lung compliance (0.80 ml . kg-1 X cmH2O-1) was not altered by anesthesia, but the pressure-volume curve was shifted 6 cmH2O higher. Thoracic compression, followed by a time-dependent effect of volume history, may account for the major change in FRC. The remainder of the decrease in FRC may be due to lower breathing frequency, loss of inspiratory muscle activity, and/or less airway resistance after anesthesia. Peak diaphragmatic electromyogram per unit VT was shown to increase almost linearly with FRC, indicating that diaphragmatic efficiency was decreased as lung volume was elevated. Functional residual capacity (FRC), tidal volume (VT), and frequency (f) were compared in 23 rats while either awake and unrestrained or anesthetized. FRC was determined from gas compression with closed airway inside a cone-shaped body plethysmograph. In the awake state (mean +/- SD), FRC was 1.02 +/- 0.22 ml/100 g, VT was 0.38 +/- 0.06 ml/100 g, and f was 142 +/- 22 breaths/min. During anesthesia, FRC decreased (P less than 0.01) to 52.9% of awake values, VT increased (P less than 0.01) to 147.4%, and f decreased (P less than 0.01) to 71.8%, leaving minute ventilation almost unchanged. An additional seven rats were used to examine postural effects on FRC during anesthesia, and in another seven animals pleural pressure changes were monitored. Dynamic lung compliance (0.80 ml . kg-1 X cmH2O-1) was not altered by anesthesia, but the pressure-volume curve was shifted 6 cmH2O higher. Thoracic compression, followed by a time-dependent effect of volume history, may account for the major change in FRC. The remainder of the decrease in FRC may be due to lower breathing frequency, loss of inspiratory muscle activity, and/or less airway resistance after anesthesia. Peak diaphragmatic electromyogram per unit VT was shown to increase almost linearly with FRC, indicating that diaphragmatic efficiency was decreased as lung volume was elevated.


1989 ◽  
Vol 66 (4) ◽  
pp. 1694-1698 ◽  
Author(s):  
R. H. Moreno ◽  
P. D. Pare

To study the interaction between tracheal cartilage and the trachealis muscle we measured trachealis muscle contraction in response to electrical field stimulation and methacholine in excised tracheal segments from control and papain-treated rabbits. Papain treatment softened the tracheal cartilage and altered the passive pressure volume curve of the tracheal segments at transmural pressures below 5 cmH2O. The transmural pressure required for maximal active changes in volume (isobaric contraction) with electrical field stimulation was increased in papain-treated animals. We conclude that tracheal cartilage provides a preload which stretches the trachealis muscle toward optimal length and that papain, by altering the elastic mechanical properties of cartilage, decreases this preload.


1985 ◽  
Vol 58 (2) ◽  
pp. 528-533 ◽  
Author(s):  
J. P. Mortola ◽  
D. Magnante ◽  
M. Saetta

The passive mechanical time constant (tau pass) of the respiratory system is relatively similar among newborn mammalian species, approximately 0.15–0.2 s. However, breathing rate (f) is higher in smaller species than larger species in order to accommodate the relatively larger metabolic demands. Since tidal volume per kilogram is an interspecies constant, in the fastest breathing species the short expiratory time should determine a substantial dynamic elevation of the functional residual capacity (FRC). We examined the possibility of a difference in expiratory time constant between dynamic and passive conditions by analyzing the expiratory flow pattern of nine newborn unanesthetized species during resting breathing. In most newborns the late portion of the expiratory flow-volume curve was linear, suggesting muscle relaxation. The slope of the curve, which represents the dynamic expiratory time constant of the respiratory system (tau exp), varied considerably among animals (from 0.1 to 0.7 s), being directly related to the inspiratory time and inversely proportional to f. In relatively slow-breathing newborns, such as infants and piglets, tau exp is longer than tau pass most likely due to an increase in the expiratory laryngeal resistance and FRC is substantially elevated. On the contrary, in the fastest breathing newborns (such as rats and mice) tau exp is similar or even less than tau pass, because at these high rates dynamic lung compliance is lower than its passive value and the dynamic elevation of FRC is small. In dynamic conditions, therefore, the product of tau exp and f is maintained within narrow limits.


2001 ◽  
Vol 164 (4) ◽  
pp. 627-632 ◽  
Author(s):  
LAURENT MARTIN-LEFÈVRE ◽  
JEAN-DAMIEN RICARD ◽  
ERIC ROUPIE ◽  
DIDIER DREYFUSS ◽  
GEORGES SAUMON

1987 ◽  
Vol 65 (6) ◽  
pp. 1142-1145 ◽  
Author(s):  
Jacopo P. Mortola ◽  
Anne Marie Lauzon ◽  
Brian Mott

During resting breathing, expiration is characterized by the narrowing of the vocal folds which, by increasing the expiratory resistance, raises mean lung volume and airway pressure. This is even more pronounced in the neonatal period, during which expirations with short complete airway closure are commonly occurring. We asked to which extent differences in expiratory flow pattern may modify the inspiratory impedance of the respiratory system. To this aim, newborn puppies, piglets, and adult rats were anesthetized, paralyzed, and ventilated with different expiratory patterns, (a) no expiratory load, (b) expiratory resistive load, and (c) end-inspiratory pause. The stroke volume of the ventilator and inspiratory and expiratory times were maintained constant, and the loads were adjusted in such a way that inflation always started from the resting volume of the respiratory system. After 1 min of each ventilatory pattern, mean inspiratory impedance and compliance of lung and respiratory system were measured. The values were unchanged or minimally altered by changing the type of ventilation. We conclude that the expiratory laryngeal loading is not primarily aimed to decrease the work of breathing. It is conceivable that the expiratory pattern is oriented to increase and control mean airway pressure in the regulation of pulmonary fluid reabsorption, distribution of ventilation, and diffusion of gases.


2018 ◽  
Author(s):  
Mohsen Nabian ◽  
Uichiro Narusawa

Quasi-static, pulmonary pressure-volume (P-V) curves over an inflation-deflation cycle are analyzed using a respiratory system model (RSM), which had been developed for quantitative characterization of the mechanical behavior of the total respiratory system. Optimum mechanical ventilation setting of Positive End Expiratory Pressure (PEEP) for total alveolar recruitment is quantified based on the existing P-V curves of healthy and injured animal models. Our analytical predictions may contribute to the optimization of mechanical ventilation settings for the Acute Respiratory Distress Syndrome (ARDS) patients.


1989 ◽  
Vol 66 (4) ◽  
pp. 1772-1778 ◽  
Author(s):  
S. Okubo ◽  
J. P. Mortola

Newborn rats were exposed to 10% O2 from 24 h to 6 days after birth, then returned to normoxia and examined at 50 days of age, i.e., after reaching sexual maturity. Despite the important impairment in somatic growth during hypoxia, at 50 days body weight and nose-tail length were as in control rats never exposed to hypoxia. Hypoxic rats had a bigger chest, with larger anteroposterior diameter, larger surface area of the muscle component of the diaphragm, and heavier and more expanded lungs. None of these structural changes were observed in a third group of rats, which were exposed for 6 days to hypoxia between 35 and 42 days of age, i.e., at a much more advanced stage of postnatal development. In addition, hypoxic rats had higher compliance of the respiratory system and of the lung and lower total pulmonary resistance than control rats. Frequency dependence of compliance was not different. We conclude that in the rat the structural changes induced by neonatal chronic hypoxia are not resolved by the return to normoxia but persist at least until postpuberty with modifications of the mechanical properties of the respiratory system.


1977 ◽  
Vol 42 (3) ◽  
pp. 413-419 ◽  
Author(s):  
N. A. Saunders ◽  
M. F. Betts ◽  
L. D. Pengelly ◽  
A. S. Rebuck

We measured lung mechanics in seven healthy males during acute isocapnic hypoxia (PAO2 = 40–50 Torr; PACO2 = 38–42 Torr). Hypoxia was accompanied by increases in total lung capacity (mean increase +/- SD; 0.40 +/- 0.24 liters; P less than 0.005) functional residual capacity (0.34 +/- 0.25 liters; P less than 0.01) and residual volume (0.56 +/- 0.44 liters; P less than 0.02) in all subjects. Specific conductance of the lung decreased during hypoxia (P less than 0.02). The static deflation pressure-volume curve of the lung was shifted upward during hypoxia in all subjects. Resting end-expiratory recoil pressure of the lung was slightly, but not significantly lower during hypoxtic expiratory lung compliance was greater during hypoxia (0.39 +/- 0.04 l/cmH2O) than control measurements (0.31 +/- 0.05 l/cmH2O; P less than 0.005). No change was noted in dynamic lung compliance. All changes in lung mechanics were reversed within three minutes of reoxygenation. We conclude that acute isocapnic hypoxia increases total lung capacity in man and suggest that this may be due to the effect of hypoxia on the airways and pulmonary circulation.


Sign in / Sign up

Export Citation Format

Share Document