Failure of therapy with 2,3-dihydroxybenzoic acid to modify the course of sepsis-induced lung injury

1990 ◽  
Vol 69 (5) ◽  
pp. 1893-1902 ◽  
Author(s):  
M. D. Sharpe ◽  
R. A. Mustard ◽  
R. R. Finley ◽  
F. S. Rutledge ◽  
W. J. Sibbald

Oxidant-induced injury of the pulmonary microvasculature reportedly contributes to an increase in microvascular permeability and pulmonary hypertension, both of which are principal features of acute lung injury (ALI). We tested the hypothesis that antioxidant therapy with 2,3-dihydroxybenzoic acid (DHB), initiated in awake sheep after the development of sepsis-induced ALI, would ameliorate the progression of these lesions. DHB has many actions that suggested to us the potential for demonstrating benefit in ALI complicating sepsis; it is a nontoxic hydroxyl-radical scavenger that also inhibits the cyclooxygenase pathway and acts as a weak iron chelator. In preliminary experiments, we demonstrated that pretreatment with DHB prevented an increase in mean pulmonary arterial pressure, plasma thromboxane A2, measured as its metabolite thromboxane B2, and lymph total protein clearance that otherwise followed an infusion of zymosan-activated plasma (ZAP) in sheep. In subsequent experiments, 12 additional sheep were rendered septic by cecal ligation and perforation. Twenty-four to 36 h after cecal ligation and perforation, an increase in lung microvascular permeability was confirmed, because pulmonary lymph flow had increased by 82% while the mean lymph-to-plasma total protein ratio was unchanged from baseline. At this point, six sheep were then treated with parenteral DHB and six with DHB vehicle for the subsequent 24 h. In contrast to the demonstrated benefit of DHB pretreatment in preventing ALI secondary to an infusion of ZAP, the progressive increase in lymph total protein clearance that complicated septic lung injury in the DHB vehicle group throughout this 24-h study period was not ameliorated in the DHB treatment group. However, DHB did prevent a modest increase in mean pulmonary arterial pressures that was demonstrated in the DHB vehicle group throughout this 24-h treatment period. Although pretreatment prevented ALI after a ZAP infusion, we conclude that DHB only incompletely modified disease progression when administered after the onset of sepsis-induced ALI because it ameliorated the pulmonary hypertensive response without concurrently modifying an increase in lung microvascular fluid flux.

1988 ◽  
Vol 65 (3) ◽  
pp. 1024-1032 ◽  
Author(s):  
A. G. Gnidec ◽  
W. J. Sibbald ◽  
H. Cheung ◽  
C. A. Metz

Since severity of acute lung injury (ALI) is reduced by pretreatment with non-steroidal agents, we hypothesized that ibuprofen would ameliorate ALI when administered after the onset of septic lung injury. Twenty-four hours after cecal ligation and perforation (CLP) in 23 sheep during a 4 h study period (period S), pulmonary lymph flow (QL) increased 16.2 +/- 12.1 ml/min (P less than 0.01) from base line, whereas lymph-to-plasma total protein concentration ratios ([L/P]TP) remained unchanged. During the subsequent 24 h of study (period D), 10 sheep received parenteral ibuprofen, 12.5 mg/kg every 6 h, and 13 sheep served as untreated septic controls. Throughout period D, a progressive increase in QL (16.2 +/- 16.3 ml/60 min) from period S was greater in the untreated than in the ibuprofen (2.5 +/- 9.0 ml/60 min, P less than 0.02) group. Between base line and period D, increase in lung wet-to-dry weight ratios was greater in the untreated group than in the ibuprofen group (P less than 0.05). Concurrently mean pulmonary arterial pressure increased 4.7 +/- 7.3 mmHg in the untreated group (P less than 0.05) during period D vs. 0.0 +/- 5.2 mmHg in the ibuprofen group (NS). When administered after septic ALI had been established by CLP, ibuprofen reduced an otherwise progressive increase in both fluid flux and extravascular lung water.


1988 ◽  
Vol 65 (1) ◽  
pp. 80-88 ◽  
Author(s):  
J. M. Klausner ◽  
L. Kobzik ◽  
C. R. Valeri ◽  
D. Shepro ◽  
H. B. Hechtman

This study tests whether activated complement leads to a selective entrapment of polymorphonuclear leukocytes (PMN's) in the lungs. Awake sheep were infused for 5 min with zymosan-activated plasma (ZAP, 2.5 mg/ml) at a rate of 5 ml/min into the superior vena cava (IV, n = 4) or intra-arterially into the aortic arch or femoral artery (IA, n = 8). At the end of IV infusion, leukocyte counts fell from 8,862 to 1,631/mm3 (P less than 0.01). PMN counts across the lungs decreased by 74%. There were increases in plasma thromboxane (Tx) B2 from 114 to 2,733 pg/ml (P less than 0.01), mean pulmonary arterial pressure from 12 to 42 mmHg (P less than 0.01), and physiological shunt from 13 to 25% (P less than 0.05). Within 1 h lymph TxB2 levels had risen from 301 to 4,916 pg/ml (P less than 0.01), lung lymph flow (QL) rose from 3.7 to 11.1 ml/30 min (P less than 0.05), lymph-to-plasma protein ratio (L/P) remained unchanged at 0.63, and lymph protein clearance increased from 2.3 to 7.5 ml/30 min (P less than 0.05). Leukosequestration, quantitated by capillary PMN counting and by assaying the granulocyte marker myeloperoxidase, occurred relative to sham animals (P less than 0.05) in the lung and spleen but not in other organs. Intra-arterial ZAP infusion led to changes that were similar in magnitude and timing to the IV group.(ABSTRACT TRUNCATED AT 250 WORDS)


2010 ◽  
Vol 4 (1) ◽  
pp. 27-36
Author(s):  
Ming-Jui Hung ◽  
Ming-Yow Hung ◽  
Wen-Jin Cherng ◽  
Li-Fu Li

Abstract Background: Positive pressure ventilation with large tidal volumes has been shown to cause lung injury via the serine/threonine kinase-protein kinase B (Akt) and endothelial nitric oxide synthase (eNOS)-pathways. However, the effects of high tidal volume (VT) ventilation on the heart are unclear. Objectives: Evaluate the effect of VT ventilation on the cardiac vascular permeability and intracellular Akt and eNOS signaling pathway. Methods: C57BL/6 and Akt knock-out (heterozygotes, +/−) mice were exposed to high VT (30 mL/kg) mechanical ventilation with room air for one and/or five hours. Results: High VT ventilation increased cardiac microvascular permeability and eNOS phosphorylation in a timedependent manner. Serum cardiac troponin I was increased after one hour of high VT ventilation. Cardiac Akt phosphorylation was accentuated after one hour and attenuated after five hours of high VT ventilation. Pharmacological inhibition of Akt with LY294002 and high VT ventilation of Akt+/− mice attenuated cardiac Akt phosphorylation, but not eNOS phosphorylation. Conclusion: High VT ventilation increased cardiac myocardial injury, microvascular permeability, and eNOS phosphorylation. Involvement of cardiac Akt in high VT ventilation was transient.


2020 ◽  
Vol 18 (2) ◽  
pp. 201-206
Author(s):  
Qiu Nan ◽  
Xu Xinmei ◽  
He Yingying ◽  
Fan Chengfen

Sepsis, with high mortality, induces deleterious organ dysfunction and acute lung injury. Natural compounds show protective effect against sepsis-induced acute lung injury. Juglone, a natural naphthoquinone, demonstrates pharmacological actions as a pro-apoptotic substrate in tumor treatment and anti-inflammation substrate in organ injury. In this study, the influence of juglone on sepsis-induced acute lung injury was investigated. First, a septic mice model was established via cecal ligation and puncture, and then verified via histopathological analysis of lung tissues, the wet/dry mass ratio and myeloperoxidase activity was determined. Cecal ligation and puncture could induce acute lung injury in septic mice, as demonstrated by alveolar damage and increase of wet/dry mass ratio and myeloperoxidase activity. However, intragastric administration juglone attenuated cecal ligation and puncture-induced acute lung injury. Secondly, cecal ligation and puncture-induced increase of inflammatory cells in bronchoalveolar lavage fluid was also alleviated by the administration of juglone. Similarly, the protective effect of juglone against cecal ligation and puncture-induced acute lung injury was accompanied by a reduction of pro-inflammatory factor secretion in bronchoalveolar lavage fluid and lung tissues. Cecal ligation and puncture could activate toll-like receptor 4/nuclear factor-kappa B signaling pathway, and administration of juglone suppressed toll-like receptor 4/nuclear factor-kappa B activation. In conclusion, juglone attenuated cecal ligation and puncture-induced lung damage and inflammatory response through inactivation of toll-like receptor 4/nuclear factor-kappa B, suggesting a potential therapeutic strategy in the treatment of sepsis-induced acute lung injury.


2019 ◽  
Vol 18 (2) ◽  
pp. 176-182
Author(s):  
Chen Weiyan ◽  
Deng Wujian ◽  
Chen Songwei

Acute lung injury is a clinical syndrome consisting of a wide range of acute hypoxemic respiratory failure disorders. Sepsis is a serious complication caused by an excessive immune response to pathogen-induced infections, which has become a major predisposing factor for acute lung injury. Taxifolin is a natural flavonoid that shows diverse therapeutic benefits in inflammation- and oxidative stress-related diseases. In this study, we investigated the role of taxifolin in a mouse model of cecal ligation and puncture-induced sepsis. Cecal ligation and puncture-operated mice presented damaged alveolar structures, thickened alveolar walls, edematous septa, and hemorrhage compared to sham-treated controls. Cecal ligation and puncture mice also showed increased wet-to-dry (W/D) lung weight ratio and elevated total protein concentration and lactate dehydrogenase level in bronchoalveolar lavage fluid. Taxifolin treatment protected animals against sepsis-induced pulmonary damage and edema. Septic mice presented compromised antioxidant capacity, whereas the administration of taxifolin prior to cecal ligation and puncture surgery decreased malondialdehyde concentration and enhanced the levels of reduced glutathione and superoxide dismutase in mice with sepsis-induced acute lung injury. Moreover, cecal ligation and puncture-operated mice showed markedly higher levels of proinflammatory cytokines relative to sham-operated group, while taxifolin treatment effectively mitigated sepsis-induced inflammation in mouse lungs. Further investigation revealed that taxifolin suppressed the activation of the nuclear factor kappa-light-chain-enhancer of activated B cells signaling pathway in cecal ligation and puncture-challenged mice by regulating the phosphorylation of p65 and IκBα. In conclusion, our study showed that taxifolin alleviated sepsis-induced acute lung injury via the inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells signaling pathway, suggesting the therapeutic potential of taxifolin in the treatment sepsis-induced acute lung injury.


2001 ◽  
Vol 90 (1) ◽  
pp. 261-268 ◽  
Author(s):  
Leonardo C. Clavijo ◽  
Mary B. Carter ◽  
Paul J. Matheson ◽  
Mark A. Wilson ◽  
William B. Wead ◽  
...  

In vivo pulmonary arterial catheterization was used to determine the mechanism by which platelet-activating factor (PAF) produces pulmonary edema in rats. PAF induces pulmonary edema by increasing pulmonary microvascular permeability (PMP) without changing the pulmonary pressure gradient. Rats were cannulated for measurement of pulmonary arterial pressure (Ppa) and mean arterial pressure. PMP was determined by using either in vivo fluorescent videomicroscopy or the ex vivo Evans blue dye technique. WEB 2086 was administered intravenously (IV) to antagonize specific PAF effects. Three experiments were performed: 1) IV PAF, 2) topical PAF, and 3) Escherichia coli bacteremia. IV PAF induced systemic hypotension with a decrease in Ppa. PMP increased after IV PAF in a dose-related manner. Topical PAF increased PMP but decreased Ppa only at high doses. Both PMP (88 ± 5%) and Ppa (50 ± 3%) increased during E. coli bacteremia. PAF-receptor blockade prevents changes in Ppa and PMP after both topical PAF and E. coli bacteremia. PAF, which has been shown to mediate pulmonary edema in prior studies, appears to act in the lung by primarily increasing microvascular permeability. The presence of PAF might be prerequisite for pulmonary vascular constriction during gram-negative bacteremia.


Author(s):  
Guang Li ◽  
Bo Wang ◽  
Xiangchao Ding ◽  
Xinghua Zhang ◽  
Jian Tang ◽  
...  

AbstractExtracellular vesicles (EVs) can be used for intercellular communication by facilitating the transfer of miRNAs from one cell to a recipient cell. MicroRNA (miR)-210-3p is released into the blood during sepsis, inducing cytokine production and promoting leukocyte migration. Thus, the current study aimed to elucidate the role of plasma EVs in delivering miR-210-3p in sepsis-induced acute lung injury (ALI). Plasma EVs were isolated from septic patients, after which the expression of various inflammatory factors was measured using enzyme-linked immunosorbent assay. Cell viability and apoptosis were measured via cell counting kit-8 and flow cytometry. Transendothelial resistance and fluorescein isothiocyanate fluorescence were used to measure endothelial cell permeability. Matrigel was used to examine the tubulogenesis of endothelial cells. The targeting relationship between miR-210-3p and ATG7 was assessed by dual-luciferase reporter assays. The expression of ATG7 and autophagy-related genes was determined to examine autophagic activation. A sepsis mouse model was established by cecal ligation and puncture (CLP)-induced surgery. The level of miR-210-3p was highly enriched in septic EVs. MiR-210-3p enhanced THP-1 macrophage inflammation, BEAS-2B cell apoptosis, and HLMVEC permeability while inhibiting angiogenesis and cellular activity. MiR-210-3p overexpression reduced ATG7 and LC3II/LC3I expression and increased P62 expression. Improvements in vascular density and autophagosome formation, increased ATG7 expression, and changes in the ratio of LC3II/LC3I were detected, as well as reduced P62 expression, in adenovirus-anti-miR-210-3p treated mice after CLP injury. Taken together, the key findings of the current study demonstrate that plasma EVs carrying miR-210-3p target ATG7 to regulate autophagy and inflammatory activation in a sepsis-induced ALI model.


Sign in / Sign up

Export Citation Format

Share Document