NMR and analytic biochemical evaluation of CrP and nucleotides in the human calf during muscle contraction

1993 ◽  
Vol 74 (4) ◽  
pp. 2034-2039 ◽  
Author(s):  
J. Bangsbo ◽  
L. Johansen ◽  
B. Quistorff ◽  
B. Saltin

This study compared biochemical and 31P-nuclear magnetic resonance (NMR) determinations of energy metabolites during isometric contractions of the human calf muscle at various exercise intensities. Seven male subjects performed one-legged isometric contractions at a work load of 28, 64, and 90% of maximal voluntary contraction force (28-, 64-, and 90%-CON, respectively) for 3 min, 40 s, and 40 s, respectively, in a magnet and in an exact model of the magnet with an arrangement for rapid muscle biopsy sampling from the gastrocnemius. The decrease in phosphocreatine (CrP) determined by NMR was 20, 33, and 71% for 28%-, 64%-, and 90%-CON, respectively. These decreases were the same as those determined biochemically (25, 34, and 61%, respectively). Muscle CrP 1 min after 90%-CON was also found to be similar between NMR and biochemical determinations (88 and 74% of resting value, respectively). Although no significant change in muscle ATP was found by NMR, a decrease of 29% was observed biochemically at 90%-CON. The ratio between muscle CrP and ATP was the same between NMR and biochemical determinations except for 90%-CON (1.98 and 0.78, respectively). The increase in muscle ADP determined by NMR was two-, five-, and eightfold higher than that found biochemically for 28%-, 64%-, and 90%-CON, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

2018 ◽  
Vol 43 (2) ◽  
pp. 174-179 ◽  
Author(s):  
Leonardo Henrique Perinotto Abdalla ◽  
Benedito Sérgio Denadai ◽  
Natália Menezes Bassan ◽  
Camila Coelho Greco

The objective of this study was to test the hypotheses that end-test torque (ET) (expressed as % maximal voluntary contraction; MVC) is higher for plantar flexors (PF) than knee extensors (KE) muscles, whereas impulse above ET (IET) is higher for KE than PF. Thus, we expected that exercise tolerance would be longer for KE than PF only during the exercise performed above ET. After the determination of MVC, 40 men performed two 5-min all-out tests to determine ET and IET. Eleven participants performed a further 4 intermittent isometric tests, to exhaustion, at ET + 5% and ET – 5%, and 1 test for KE at the exercise intensity (%MVC) corresponding to ET + 5% of PF. The IET (7243.2 ± 1942.9 vs. 3357.4 ± 1132.3 N·m·s) and ET (84.4 ± 24.8 vs. 73.9 ± 19.5 N·m) were significantly lower in PF compared with KE. The exercise tolerance was significantly longer for PF (300.7 ± 156.7 s) than KE (156.7 ± 104.3 s) at similar %MVC (∼60%), and significantly shorter for PF (300.7 ± 156.7 s) than KE (697.0 ± 243.7 s) at ET + 5% condition. However, no significant difference was observed for ET – 5% condition (KE = 1030.2 ± 495.4 s vs. PF = 1028.3 ± 514.4 s). Thus, the limit of tolerance during submaximal isometric contractions is influenced by absolute MVC only during exercise performed above ET, which seems to be explained by differences on both ET (expressed as %MVC) and IET values.


2011 ◽  
Vol 111 (12) ◽  
pp. 2987-2995 ◽  
Author(s):  
Peter Krustrup ◽  
Niels Ørtenblad ◽  
Joachim Nielsen ◽  
Lars Nybo ◽  
Thomas P. Gunnarsson ◽  
...  

1973 ◽  
Vol 44 (5) ◽  
pp. 479-491 ◽  
Author(s):  
Patricia G. B. Baker ◽  
R. F. Mottram

1. Methods are described for study of metabolism of human skeletal muscle in situ, at rest and during mild sustained contraction in the fed and fasted states. 2. At rest the average oxygen uptake was 0.29 ml min−1 100 ml of muscle−1 and the carbon dioxide output was 0.22 ml. Glucose uptake was 0.49 mg min−1 100 ml of muscle−1. The respiratory quotient was 0.75, indicating that most of the glucose was being stored. 3. When subjects made hand-grips of 5% of their maximal voluntary contraction force (5% MVC) the oxygen and carbon dioxide exchanges both increased by six times while the glucose uptake increased by 70% of the resting value. 4. A 7 h fast before the observations were made severely decreased both resting and exercising glucose uptake but produced no other alteration in the metabolism of the muscle.


Author(s):  
Callum G. Brownstein ◽  
Loïc Espeit ◽  
Nicolas Royer ◽  
Paul Ansdell ◽  
Jakob Škarabot ◽  
...  

Cervicomedullary stimulation provides a means of assessing motoneuron excitability. Previous studies demonstrated that during low-intensity sustained contractions, small cervicomedullary evoked potentials (CMEPs) conditioned using transcranial magnetic stimulation (TMS-CMEPs) are reduced, whilst large TMS-CMEPs are less affected. Since small TMS-CMEPs recruit motoneurons most active during low-intensity contractions while large TMS-CMEPs recruit a high proportion of motoneurons inactive during the task, these results suggest that reductions in motoneuron excitability could be dependent on repetitive activation. To further test this hypothesis, this study assessed changes in small and large TMS-CMEPs across low- and high-intensity contractions. Twelve participants performed a sustained isometric contraction of the elbow flexor for 4.5 min at the electromyography (EMG) level associated with 20% maximal voluntary contraction force (MVC; low-intensity) and 70% MVC (high-intensity). Small and large TMS-CMEPs with amplitudes of ~15 and ~50% Mmax at baseline, respectively, were delivered every minute throughout the tasks. Recovery measures were taken at 1, 2.5 and 4-min post-exercise. During the low-intensity trial, small TMS-CMEPs were reduced at 2-4 min (p≤0.049) by up to −10% Mmax, while large TMS-CMEPs remained unchanged (p≥0.16). During the high-intensity trial, small and large TMS-CMEPs were reduced at all time-points (p<0.01) by up to −14% and −33% Mmax, respectively, and remained below baseline during all recovery measures (p≤0.02). TMS-CMEPs were unchanged relative to baseline during recovery following the low-intensity trial (p≥0.24). These results provide novel insight into motoneuron excitability during and following sustained contractions at different intensities, and suggest that contraction-induced reductions in motoneuron excitability depend on repetitive activation.


1980 ◽  
Vol 49 (4) ◽  
pp. 649-654 ◽  
Author(s):  
D. Richardson ◽  
R. Shewchuk

The purpose of this study was to examine the separate effects of contraction force and frequency on postexercise hyperemia in the human calf muscle. Nine male subjects were used. Each was seated in a chair with the right foot on a pedal coupled to a load cell and the knee secured. Calf muscle blood flow, measured by a Whitney gauge, was determined before and periodically after 3-pmin bouts of rhythmic isometric plantar-flexor exercise. The contraction frequency was graded from 20 to 50 to 80 contractions/min. The force per contraction was graded from 7.5 to 15 to 30% of maximum voluntary contraction (MVC) of the calf muscle. The average MCV was 502 lb. Peak postexercise blood flow (PBF) increased with either increasing frequency at a given force or increasing force at a given frequency. However, at the higher levels of exercise, PBF tended to plateau at a value of about 50 ml.min-1.100 ml-1. The plateau phase of PBF was associated with a substantial increase in the total volume of postexercise hyperemia. This appeared to be well above any repayment of a blood flow deficit. However, it is not certain that the extra volume represented the repayment of a true blood flow debt.


1978 ◽  
Vol 45 (1) ◽  
pp. 64-68 ◽  
Author(s):  
J. S. Petrofsky ◽  
A. R. Lind

Three well-trained male subjects served as volunteers in these experiments to examine the physiological capacity for extended work during lifting tasks. The maximal oxygen uptake (VO2max) during lifting was always lower than work on the bicycle ergometer. However, the work load during lifting which could be maintained for 1--4 h was 50% of the VO2max for lifting each specific weight of box; the limit for lifting light boxes without fatigue was at an oxygen uptake of about 25% of the VO2max obtained from bicycle ergometry. Significant fatigue in the forearm muscles was found during prolonged lifting as assessed from the endurance of isometric contractions and from the surface electromyogram (EMG), and was more pronounced as the weight of the box increased.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Cassio V. Ruas ◽  
Christopher Latella ◽  
Janet L. Taylor ◽  
G. Gregory Haff ◽  
Kazunori Nosaka

Sign in / Sign up

Export Citation Format

Share Document