Muscle function and protein metabolism after initiation of eccentric contraction-induced injury

1995 ◽  
Vol 79 (4) ◽  
pp. 1260-1270 ◽  
Author(s):  
D. A. Lowe ◽  
G. L. Warren ◽  
C. P. Ingalls ◽  
D. B. Boorstein ◽  
R. B. Armstrong

This study was designed to determine the relationship between skeletal muscle function and protein metabolism after initiation of eccentric contraction-induced injury. Mouse anterior crural muscles were injured in vivo, and then either immediately or 3, 6, 24, 48, 72, 120, or 336 h after injury muscles were isolated and studied for indexes of muscle function, injury, phagocyte infiltration, and protein metabolism. A group of mice were administered anti-polymorphonuclear cell and anti-macrophage antisera in an attempt to reduce phagocytic infiltration into injured muscle. Force production in extensor digitorum longus muscles was reduced 55% immediately after injury induction and did not recover significantly until 120 h postinjury (28% below baseline). However, rates of protein degradation were not elevated until 48 h postinjury (60% above normal) and were not correlated with the changes in force production (r = -0.37; P = 0.24). Phagocytic infiltration was evident 24–120 h postinjury and was correlated with the elevated protein degradation rates (r = 0.75; P < 0.01). Protein synthesis rates began to increase approximately 48 h after injury was induced and were elevated by 83% 5 days postinjury. Fourteen days after injury, muscle protein degradation and synthesis rates had returned to normal, as well as specific force production, and phagocytic infiltration was not detected. However, muscle mass, protein content, and absolute force production were lower than normal. Antisera-treated mice were rendered neutropenic, but there was no difference in any variable measured between muscles from these mice and muscles from normal mice.

1992 ◽  
Vol 263 (5) ◽  
pp. E928-E934 ◽  
Author(s):  
K. S. Nair ◽  
R. G. Schwartz ◽  
S. Welle

Leucine has been proposed as an in vivo regulator of protein metabolism, although the evidence for this in humans remains inconclusive. To test this hypothesis, we infused either L-leucine (154 +/- 1 mumol.kg-1 x h-1) or saline intravenously in six healthy men in two separate studies. L-Leucine infusion increased plasma concentrations of leucine and alpha-ketoisocaproate from 112 +/- 6 and 38 +/- 3 mumol/l to 480 +/- 27 (P < 0.001) and 94 +/- 13 mumol/l (P < 0.001), respectively, without any significant change in circulating insulin or C peptide levels. Leucine infusion decreased plasma concentrations of several amino acids and decreased whole body valine flux and valine oxidation (using L-[1-13C]valine as a tracer) and phenylalanine flux (using [2H5]-phenylalanine as a tracer). According to arteriovenous differences across the leg, the net balance of phenylalanine, valine, and lysine shifted toward greater retention during leucine infusion, whereas alanine balance did not change. Valine release and phenylalanine release from the leg (estimated from the dilution of respective tracers) decreased, indicating inhibition of protein degradation by leucine infusion. We conclude that leucine decreases protein degradation in humans and that this decreased protein degradation during leucine infusion contributes to the decrease in plasma essential amino acids. This study suggests a potential role for leucine as a regulator of protein metabolism in humans.


1979 ◽  
Vol 178 (3) ◽  
pp. 725-731 ◽  
Author(s):  
R D Conde

The effect of hypophysectomy on the protein metabolism of the liver in vivo was studied. Fractional rates of protein synthesis and degradation were determined in the livers of normal and hypophysectomized rats. Synthesis was measured after the injection of massive amounts of radioactive leucine. Degradation was estimated either as the balance between synthesis and accumulation of stable liver proteins or from the disappearance of radioactivity from the proteins previously labelled by the injection of NaH14CO3. The results indicate that: (1) hypophysectomy diminishes the capacity of the liver to synthesize proteins in vivo, mainly of those that are exported as plasma proteins; (2) livers of both normal and hypophysectomized rats show identical protein-degradation rates, whereas plasma proteins are degraded slowly after hypophysectomy.


1982 ◽  
Vol 204 (3) ◽  
pp. 663-672 ◽  
Author(s):  
Bhanu R. Odedra ◽  
David J. Millward

The effect of corticosterone on protein turnover in skeletal muscle was investigated in growing rats. Protein synthesis was measured in vivo by the constant infusion of [14C]tyrosine. The extent to which any effect of corticosterone is modulated by the hyperinsulinaemia induced by steroid treatment was examined by giving the hormone not only to adrenalectomized rats but also to streptozotocin-induced diabetic rats maintained throughout the treatment period on two dosages of insulin by an implanted osmotic minipump. Approximate rates of protein degradation were also estimated in some cases as the difference between synthesis and net change in muscle protein mass. Measurements were also made of free 3-methylhistidine concentration in muscle and plasma. At 10mg of corticosterone/100g body wt. per day, growth stopped and muscle wasting occurred, whereas at 5 mg of corticosterone/100g body wt. per day no net loss of protein occurred. However, this low dose did induce muscle wasting when insulin concentration was regulated by a dose of 1.2 units/day. Protein synthesis was markedly depressed in all treated groups, the depression in the insulin-maintained rats being marginally more than in the hyperinsulinaemic adrenalectomized rats. The oxidative soleus muscle appeared to be less susceptible to the effect of the corticosterone than was the more glycolytic plantaris or gastrocnemius muscle. Any effect of the corticosterone on protein degradation was much less than its effects on protein synthesis. Where increases in the degradation rates appeared to occur in the rats treated with 10mg of corticosterone/100g body wt. per day, the increases were less than 20%. The free intracellular 3-methylhistidine concentrations were doubled in all groups treated with 5 mg of corticosterone/100g body wt. per day and increased 5-fold in the adrenalectomized rats treated with 10mg of corticosterone/100g body wt. per day, with no change in plasma concentration in any of the groups. It is therefore concluded that: (a) the suppression of protein synthesis is the main effect of glucocorticoids in muscle; (b) marked increases in insulin afford only minor protection against this effect; (c) stimulation of protein degradation may occur, but to a much lesser extent.


2021 ◽  
Vol 2 ◽  
Author(s):  
Kevin A. Zwetsloot ◽  
R. Andrew Shanely ◽  
Joshua S. Godwin ◽  
Charles F. Hodgman

Background: Eccentric muscle contractions are commonly used in exercise regimens, as well as in rehabilitation as a treatment against muscle atrophy and weakness. If repeated multiple times, eccentric contractions may result in skeletal muscle injury and loss of function. Skeletal muscle possesses the remarkable ability to repair and regenerate after an injury or damage; however, this ability is impaired with aging. Phytoecdysteroids are natural plant steroids that possess medicinal, pharmacological, and biological properties, with no adverse side effects in mammals. Previous research has demonstrated that administration of phytoecdysteroids, such as 20-hydroxyecdysone (20E), leads to an increase in protein synthesis signaling and skeletal muscle strength.Methods: To investigate whether 20E enhances skeletal muscle recovery from eccentric contraction-induced damage, adult (7–8 mo) and old (26–27 mo) mice were subjected to injurious eccentric contractions (EC), followed by 20E or placebo (PLA) supplementation for 7 days. Contractile function via torque-frequency relationships (TF) was measured three times in each mouse: pre- and post-EC, as well as after the 7-day recovery period. Mice were anesthetized with isoflurane and then electrically-stimulated isometric contractions were performed to obtain in vivo muscle function of the anterior crural muscle group before injury (pre), followed by 150 EC, and then again post-injury (post). Following recovery from anesthesia, mice received either 20E (50 mg•kg−1 BW) or PLA by oral gavage. Mice were gavaged daily for 6 days and on day 7, the TF relationship was reassessed (7-day).Results: EC resulted in significant reductions of muscle function post-injury, regardless of age or treatment condition (p &lt; 0.001). 20E supplementation completely recovered muscle function after 7 days in both adult and old mice (pre vs. 7-day; p &gt; 0.05), while PLA muscle function remained reduced (pre vs. 7-day; p &lt; 0.01). In addition, histological markers of muscle damage appear lower in damaged muscle from 20E-treated mice after the 7-day recovery period, compared to PLA.Conclusions: Taken together, these findings demonstrate that 20E fully recovers skeletal muscle function in both adult and old mice just 7 days after eccentric contraction-induced damage. However, the underlying mechanics by which 20E contributes to the accelerated recovery from muscle damage warrant further investigation.


Author(s):  
Jorn Trommelen ◽  
Andrew M. Holwerda ◽  
Philippe J. M. Pinckaers ◽  
Luc J. C. van Loon

All human tissues are in a constant state of remodelling, regulated by the balance between tissue protein synthesis and breakdown rates. It has been well-established that protein ingestion stimulates skeletal muscle and whole-body protein synthesis. Stable isotope-labelled amino acid methodologies are commonly applied to assess the various aspects of protein metabolism in vivo in human subjects. However, to achieve a more comprehensive assessment of post-prandial protein handling in vivo in human subjects, intravenous stable isotope-labelled amino acid infusions can be combined with the ingestion of intrinsically labelled protein and the collection of blood and muscle tissue samples. The combined application of ingesting intrinsically labelled protein with continuous intravenous stable isotope-labelled amino acid infusion allows the simultaneous assessment of protein digestion and amino acid absorption kinetics (e.g. release of dietary protein-derived amino acids into the circulation), whole-body protein metabolism (whole-body protein synthesis, breakdown and oxidation rates and net protein balance) and skeletal muscle metabolism (muscle protein fractional synthesis rates and dietary protein-derived amino acid incorporation into muscle protein). The purpose of this review is to provide an overview of the various aspects of post-prandial protein handling and metabolism with a focus on insights obtained from studies that have applied intrinsically labelled protein under a variety of conditions in different populations.


1996 ◽  
Vol 80 (1) ◽  
pp. 332-340 ◽  
Author(s):  
C. P. Ingalls ◽  
G. L. Warren ◽  
D. A. Lowe ◽  
D. B. Boorstein ◽  
R. B. Armstrong

The purpose of this study was to evaluate the effects of four anesthetic regimens on in vivo contractile function of mouse ankle dorsiflexor muscles. The torque-frequency and torque-velocity relationships were determined for the following anesthetics: fentanyl-droperidol and diazepam (F-d/d); ketamine and xylazine (K/x); pentobarbital sodium (Ps); and methoxyflurane (Mf). Mf, Ps, and F-d/d regimens resulted in comparable contractile responses at low doses, whereas K/x produced a relative depression in isometric contractile function as shown by a decrease in the torque-time integral at the 300-Hz stimulation frequency (-13.9%; P < 0.05). Moreover, K/x caused a shift to the left in the torque-frequency curve as indicated by increases in torque-time integrals at 25 and 50 Hz. Both Ps and F-d/d regimens exhibited dose-dependent effects during the isovelocity contractions. Ps significantly reduced work (-28.7%) and average power (-28.9%) at 800 degrees/s at the high dose. In contrast, F-d/d anesthesia resulted in increases in peak torque (16-20%) and work (15-18%) output at all eccentric contraction velocities at the high dose, whereas average power was increased only at -800 (17%) and -1,000 degrees/s (17%). In conclusion, commonly used anesthetic regimens can affect the contractile response in vivo; K/x and Ps yield smaller torque outputs, whereas Mf and F-d/d consistently produce larger contractile responses. Mf and F-d/d are recommended for use in studying skeletal muscle function in mice in vivo.


2011 ◽  
Vol 43 (Suppl 1) ◽  
pp. 903
Author(s):  
David S. Hydock ◽  
Chia-Ying Lien ◽  
Brock T. Jensen ◽  
Traci L. Parry ◽  
Carole M. Schneider ◽  
...  

2008 ◽  
Vol 79 (5) ◽  
pp. 771-778 ◽  
Author(s):  
Dawit A. P. Gonçalves ◽  
Renato H. Migliorini ◽  
Neusa M. Zanon ◽  
Flávia A. Graça ◽  
Luiz C. C. Navegantes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document