Dobutamine as a countermeasure for reduced exercise performance of rats exposed to simulated microgravity

1997 ◽  
Vol 82 (5) ◽  
pp. 1607-1615 ◽  
Author(s):  
Charles M. Tipton ◽  
Lisa A. Sebastian

Tipton, Charles M., and Lisa A. Sebastian. Dobutamine as a countermeasure for reduced exercise performance of rats exposed to simulated microgravity. J. Appl. Physiol. 82(5): 1607–1615, 1997.—Post-spaceflight results and findings from humans and rodents after conditions of bed rest or simulated microgravity indicate maximum exercise performance is significantly compromised. However, the chronic administration of dobutamine (a synthetic adrenomimetic) to humans in relevant experiments improves exercise performance by mechanisms that prevent the decline in peak O2 consumption (V˙o 2 peak) and reduce the concentration of lactic acid measured in the blood. Although dobutamine restores maximumV˙o 2values in animals participating in simulated microgravity studies, it is unknown whether injections of this α1-, β1-, and β2-adrenoceptor agonist in rats will enhance exercise performance. To investigate this, adult male rats were assigned to three experimental groups: caged control receiving saline; head-down, tail-suspended (HDS) receiving saline (HDS-S); and an HDS group receiving dobutamine hydrochloride injections (1.8 mg/kg twice daily per rat). Treadmill tests were performed before suspension, at 14 days, and after 21 days.V˙o 2 peak, run time, and the rate of rise in colonic temperature (heating index) were evaluated after 14 days, whereas at 21 days, hemodynamic responses (heart rate, systolic blood pressure, and double product) were determined during submaximal exercise with blood pH, blood gases, and lactic acid concentration values obtained during maximal exercise. In contrast to the results for the HDS-S rats, dobutamine administration did restore V˙o 2 peakand “normalized” lactic acid concentrations during maximal exercise. However, daily injections were unable to enhance exercise performance aspects associated with treadmill run time, the mechanical efficiency of running, the heating index, or the retention of muscle and body mass. These simulated microgravity findings suggest that dobutamine’s potential value as a countermeasure for postflight maximal performance or for egress emergencies is limited and that other countermeasures must be considered.

1994 ◽  
Vol 77 (2) ◽  
pp. 684-691 ◽  
Author(s):  
R. L. Ge ◽  
Q. H. Chen ◽  
L. H. Wang ◽  
D. Gen ◽  
P. Yang ◽  
...  

To examine the hypothesis that the pathway of adaptation to high altitude in natives differs considerably from that in newcomers, we measured maximal O2 uptake (VO2max), minute ventilation, anaerobic threshold (AT), blood lactate, and blood gases during maximal exercise in 17 lifelong Tibetan residents and 14 acclimatized Han Chinese newcomers living at the altitude of 4,700 m. The two groups were similar in age, height, and weight, and the subjects were nonathletes. Although VO2max was significantly lower in the Tibetans than in the Hans (30.4 +/- 1.5 vs. 36.0 +/- 1.9 ml.min-1.kg-1 STPD; P < 0.05), at maximal exercise effort the exercise workload was greater (167.7 +/- 4.2 vs. 150.0 +/- 5.9 W; P < 0.05). The mean AT values (in % VO2max) in the Tibetan and Han subjects were 84.1 and 61.6%, respectively (P < 0.01). Minute ventilation at maximal exercise was significantly lower in the Tibetans than in the Hans (68.4 +/- 3.4 vs. 79.7 +/- 4.1 l/min BTPS; P < 0.05), whereas heart rate at maximal effort was equivalent in the two groups. The Tibetans showed lower blood lactate value than did the Hans both before and at the end of exercise. We conclude that the Tibetan natives have higher exercise performance and AT but lower VO2max and blood lactate concentration than do acclimatized Han newcomers. These results may reflect the effects of genetic or peripheral adaptation factors in the Tibetan natives.


1962 ◽  
Vol 202 (2) ◽  
pp. 343-346 ◽  
Author(s):  
Dennis D. Goetsch ◽  
L. E. McDonald

The effects of glucocorticoid administration on oxygen uptake, glucose and glycogen disappearance, lactic acid formation, and inorganic phosphate and protein levels in rat liver homogenates have been studied. A single injection of hydrocortisone, prednisolone, or 9 α-fluoroprednisolone 5 hr before sacrifice resulted in a highly significant increase in oxygen uptake by rat liver homogenates, whereas chronic administration of prednisolone daily for 7 days caused a marked inhibition in homogenate respiration. Glycolytic rate did not appear to be affected by single injections since endogenous carbohydrate utilization was similar in liver homogenates prepared from control and treated animals. Incubation of liver homogenates under aerobic conditions disclosed that inorganic phosphate levels were decreased in homogenates from corticoid-treated rats, whereas these levels were similar in treated and control liver homogenates incubated under nitrogen. Under anaerobic conditions, liver homogenates from treated rats accumulated lactic acid more rapidly than untreated liver homogenates. Glucocorticoid treatment did not appear to affect protein disappearance since no differences between protein levels in treated and untreated rat liver homogenates were detected following incubation.


1982 ◽  
Vol 23 (4) ◽  
pp. 283-288 ◽  
Author(s):  
H. Th. M. Folgering ◽  
J. F. E. Borm ◽  
R. H. L. M. van Haaren

1987 ◽  
Vol 72 (4) ◽  
pp. 415-422 ◽  
Author(s):  
Michele Matter ◽  
Tessa Stittfall ◽  
John Graves ◽  
Kathryn Myburgh ◽  
Brett Adams ◽  
...  

1990 ◽  
Vol 61 (3-4) ◽  
pp. 294-301 ◽  
Author(s):  
Jon Linderman ◽  
Thomas D. Fahey ◽  
Gregory Lauten ◽  
Alan S. Brooker ◽  
Doug Bird ◽  
...  

2011 ◽  
pp. P3-148-P3-148
Author(s):  
Hisanori Matsui ◽  
Akira Tanaka ◽  
Kotaro Yokoyama ◽  
Yoshihiro Takatsu ◽  
Kaori Ishikawa ◽  
...  

2021 ◽  
Author(s):  
Ahmed M Hamdan ◽  
Zuhair M. Mohammedsaleh ◽  
Aalaa Aboelnour ◽  
Sherif M.H. Elkhannishi

Abstract PurposeThe therapeutic activity of Glyceryl trinitrate (GTN) is mainly regulated by liberating nitric oxide (NO) and reactive nitrogen species (RNS). During this biotransformation, oxidative stress and lipid peroxidation inside the red blood cells (RBCs) occur. The principal objective of our research is to explain the ameliorating effect of L-ascorbic acid for the deleterious effects of chronic administration of nitrovasodilator drugs. MethodsWe studied some biochemical parameters for the oxidative stress using groups of high sucrose/fat (HSF) diet Wistar male rats chronically orally administered ISMN. Afterwards, we evaluated the role of L-ascorbic acid against these biochemical changes. ResultsChronic treatment with organic nitrates caused elevated serum levels of lipid peroxidation, hemoglobin derivatives as methemoglobin and carboxyhemoglobin, rate of hemoglobin autoxidation, the cellular levels of pro-inflammatory cytokines marker (NF-κB) and apoptosis markers (caspase-3) in myocardium muscles in a dose dependent manner. Meanwhile, such exposure caused decline in the enzymatic effect of superoxide dismutase (SOD), glutathione (GSH) and catalase activity (CAT) accompanied with a decrease of in the level of mitochondrial oxidative stress marker (nrf2) in myocardium muscles and decrease in the serum iron and total iron binding capacity (TIBC) in a dose dependent manner. Concomitant treatment with L-ascorbic acid significantly diminished these changes for all examined parameters.ConclusionChronic administration of organic nitrates leads to the alteration of the level of oxidative stress factors in the myocardium tissue due to generation of reactive oxygen species. Using vitamin C can effectively ameliorate such intoxication to overcome the nitrate tolerance.


Sign in / Sign up

Export Citation Format

Share Document