Non-cAMP-mediated bronchial arterial vasodilation in response to inhaled β-agonists

1998 ◽  
Vol 84 (1) ◽  
pp. 215-221 ◽  
Author(s):  
Paula Carvalho ◽  
Shane R. Johnson ◽  
Nirmal B. Charan

Carvalho, Paula, Shane R. Johnson, Nirmal B. Charan.Non-cAMP-mediated bronchial arterial vasodilation in response to inhaled β-agonists. J. Appl. Physiol. 84(1): 215–221, 1998.—We studied the dose-dependent effects of inhaled isoetharine HCl, a β-adrenergic bronchodilator (2.5, 5.0, 10.0, and 20.0 mg), on bronchial blood flow (Q˙br) in anesthetized sheep. Isoetharine resulted in a dose-dependent increase in Q˙br. With a total dose of 17.5 mg, Q˙br increased from baseline values of 22 ± 3.4 (SE) to 60 ± 16 ml/min ( P < 0.001), an effect independent of changes in cardiac output and systemic arterial pressure. To further study whether synthesis of endogenous nitric oxide (NO) affects β-agonist-induced increases in Q˙br, we administered isoetharine (20 mg) by inhalation before and after the NO-synthase inhibitor N ω-nitro-l-arginine methyl ester (l-NAME). Intravenous l-NAME (30 mg/kg) rapidly decreased Q˙br by ∼80% of baseline, whereas l-NAME via inhalation (10 mg/kg) resulted in a delayed and smaller (∼22%) decrease. Pretreatment with l-NAME via both routes of administration attenuated bronchial arterial vasodilation after subsequent challenge with isoetharine. We conclude that isoetharine via inhalation increases Q˙br in a dose-dependent manner and that β-agonist-induced relaxation of vascular smooth muscle in the bronchial vasculature is partially mediated via synthesis of NO.

1997 ◽  
Vol 82 (6) ◽  
pp. 1918-1925 ◽  
Author(s):  
A. O. A. Zschauer ◽  
M. W. Sielczak ◽  
D. A. S. Smith ◽  
A. Wanner

Zschauer, A. O. A., M. W. Sielczak, D. A. S. Smith, and A. Wanner. Norepinephrine-induced contraction of isolated rabbit bronchial artery: role of α1- and α2-adrenoceptor activation. J. Appl. Physiol. 82(6): 1918–1925, 1997.—The contractile effect of norepinephrine (NE) on isolated rabbit bronchial artery rings (150–300 μm in diameter) and the role of α1- and α2-adrenoceptors (AR) on smooth muscle and endothelium were studied. In intact arteries, NE increased tension in a dose-dependent manner, and the sensitivity for NE was further increased in the absence of endothelium. In intact but not in endothelium-denuded arteries, the response to NE was increased in the presence of both indomethacin (Indo; cyclooxygenase inhibitor) and N G-nitro-l-arginine methyl ester [l-NAME; nitric oxide (NO) synthase inhibitor], indicating that two endothelium-derived factors, NO and a prostanoid, modulate the NE-induced contraction. The α1-AR antagonist prazosin shifted the NE dose-response curve to the right, and phenylephrine (α1-AR agonist) induced a dose-dependent contraction that was potentiated byl-NAME or removal of the endothelium. The sensitivity to NE was increased slightly by the α2-AR antagonists yohimbine and idazoxan, and this effect was abolished by Indo or removal of the endothelium. Similarly, contractions induced by UK-14304 (α2-AR agonist) were potentiated by Indo or removal of the endothelium. These results suggest that NE-induced contraction is mediated through activation of α1- and α2-ARs on both smooth muscle and endothelium. Activation of the α1- and α2-ARs on the smooth muscle causes contraction, whereas activation of the endothelial α1- and α2-ARs induces relaxation through release of NO (α1-ARs) and a prostanoid (α2-ARs).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Saimai Chatree ◽  
Chantacha Sitticharoon ◽  
Pailin Maikaew ◽  
Kitchaya Pongwattanapakin ◽  
Issarawan Keadkraichaiwat ◽  
...  

AbstractObesity is associated with the growth and expansion of adipocytes which could be decreased via several mechanisms. Cissus Quadrangularis (CQ) extract has been shown to reduce obesity in humans; however, its effect on human white adipocytes (hWA) has not been elucidated. This study aimed to investigate the effects of CQ on obesity, lipolysis, and browning of hWA. CQ treatment in obese humans significantly decreased waist circumference at week 4 and week 8 when compared with the baseline values (p < 0.05 all) and significantly decreased hip circumference at week 8 when compared with the baseline and week 4 values (p < 0.05 all). Serum leptin levels of the CQ-treated group were significantly higher at week 8 compared to baseline levels (p < 0.05). In hWA, glycerol release was reduced in the CQ-treated group when compared with the vehicle-treated group. In the browning experiment, pioglitazone, the PPAR-γ agonist, increased UCP1 mRNA when compared to vehicle (p < 0.01). Interestingly, 10, 100, and 1000 ng/ml CQ extract treatment on hWA significantly enhanced UCP1 expression in a dose-dependent manner when compared to pioglitazone treatment (p < 0.001 all). In conclusion, CQ decreased waist and hip circumferences in obese humans and enhanced UCP1 mRNA in hWA suggestive of its action via browning of hWA.


1989 ◽  
Vol 66 (3) ◽  
pp. 1471-1476 ◽  
Author(s):  
H. Lum ◽  
P. J. Del Vecchio ◽  
A. S. Schneider ◽  
M. S. Goligorsky ◽  
A. B. Malik

We examined whether the increase in endothelial albumin permeability induced by alpha-thrombin is dependent on extracellular Ca2+ influx. Permeability of 125I-albumin across confluent monolayers of cultured bovine pulmonary artery endothelial cells was measured before and after the addition of 0.1 microM alpha-thrombin. In the presence of normal extracellular Ca2+ concentration ([Ca2+]o, 1000 microM), alpha-thrombin produced a 175 +/- 10% increase in 125I-albumin permeability. At lower [Ca2+]o (100, 10, 1, or less than 1 microM), alpha-thrombin caused a 140% increase in permeability (P less than 0.005). LaCl3 (1 mM), which competes for Ca2+ entry, blunted 38% of the increase in permeability. Preloading endothelial monolayers with quin2 to buffer cytosolic Ca2+ (Cai2+) produced a dose-dependent inhibition of the increase in 125I-albumin permeability. Preincubation with nifedipine or verapamil was ineffective in reducing the thrombin-induced permeability increase. A 60 mM K+ isosmotic solution did not alter base-line endothelial permeability. alpha-Thrombin increased [Ca2+]i in a dose-dependent manner and the 45Ca2+ influx rate. Extracellular medium containing 60 mM K+ did not increase 45Ca2+ influx, and nifedipine did not block the rise in 45Ca2+ influx caused by alpha-thrombin. Ca2+ flux into endothelial cells induced by alpha-thrombin does not occur through voltage-sensitive channels but may involve receptor-operated channels. In conclusion, the increase in endothelial albumin permeability caused by alpha-thrombin is dependent on Ca2+ influx and intracellular Ca2+ mobilization.


2000 ◽  
Vol 279 (3) ◽  
pp. H882-H888 ◽  
Author(s):  
Naruto Matsuda ◽  
Kathleen G. Morgan ◽  
Frank W. Sellke

The effects of the potassium (K+) channel opener pinacidil (Pin) on the coronary smooth muscle Ca2+-myosin light chain (MLC) phosphorylation pathway under hypothermic K+cardioplegia were determined by use of an in vitro microvessel model. Rat coronary arterioles (100–260 μm in diameter) were subjected to 60 min of simulated hypothermic (20°C) K+cardioplegic solutions (K+= 25 mM). We first characterized the time course of changes in intracellular Ca2+concentration, MLC phosphorylation, and diameter and observed that the K+cardioplegia-related vasoconstriction was associated with an activation of the Ca2+-MLC phosphorylation pathway. Supplementation with Pin effectively suppressed the Ca2+accumulation and MLC phosphorylation in a dose-dependent manner and subsequently maintained a small decrease in vasomotor tone. The ATP-sensitive K+(KATP)-channel blocker glibenclamide, but not the nitric oxide (NO) synthase inhibitor Nω-nitro-l-arginine methyl ester, significantly inhibited the effect of Pin. K+cardioplegia augments the coronary Ca2+-MLC pathway and results in vasoconstriction. Pin effectively prevents the activation of this pathway and maintains adequate vasorelaxation during K+cardioplegia through a KATP-channel mechanism not coupled with the endothelium-derived NO signaling cascade.


1993 ◽  
Vol 264 (2) ◽  
pp. H464-H469 ◽  
Author(s):  
M. J. Breslow ◽  
J. R. Tobin ◽  
D. S. Bredt ◽  
C. D. Ferris ◽  
S. H. Snyder ◽  
...  

To determine whether nitric oxide (NO) is involved in adrenal medullary vasodilation during splanchnic nerve stimulation (NS)-induced catecholamine secretion, blood flow (Q) and secretory responses were measured in pentobarbital-anesthetized dogs before and after administration of the NO synthase inhibitor, NG-nitro-L-arginine methyl ester (L-NAME). L-NAME (40 mg/kg iv over 5 min, followed by 40 mg.kg-1.h-1) reduced NO synthase activity of medullary and cortical homogenates from 5.2 +/- 0.3 to 0.7 +/- 0.1 pmol.min-1.mg protein-1 and from 1.2 +/- 0.2 pmol.min-1.mg protein-1 to undetectable levels, respectively. L-NAME reduced resting medullary and cortical Q by 42 and 60%, respectively. NS before L-NAME increased medullary Q from 181 +/- 16 to 937 +/- 159 ml.min-1.100 g-1 and epinephrine secretion from 1.9 +/- 0.8 to 781 +/- 331 ng/min. NS after L-NAME had no effect on medullary Q (103 +/- 14 vs. 188 +/- 34 ml.min-1.100 g-1), while epinephrine secretion increased to the same extent as in control animals (1.9 +/- 0.7 vs. 576 +/- 250 ng/min). L-NAME also unmasked NS-induced cortical vasoconstriction; cortical Q decreased from 96 +/- 8 to 50 +/- 5 ml.min-1.100 g-1. Administration of hexamethonium (30 mg/kg iv), a nicotinic receptor antagonist, reduced NS-induced epinephrine secretion by 90%. These data suggest independent neural control of medullary Q and catecholamine secretion, the former by NO and the latter by acetylcholine.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Alexandra Folk ◽  
Coralia Cotoraci ◽  
Cornel Balta ◽  
Maria Suciu ◽  
Hildegard Herman ◽  
...  

Invasive fungal infection is a well-known cause of morbidity and mortality in immunocompromised patients. In this study we aimed to evaluate the hepatotoxicity induced by combined therapy of flucytosine and amphotericin B, at three different doses administered to mice for 14 days: 50 mg/kg flucytosine and 300 μg/kg amphotericin B; 100 mg/kg flucytosine and 600 μg/kg amphotericin B; 150 mg/kg flucytosine and 900 μg/kg amphotericin B. Liver injuries were evaluated by analysis of optic and electron microscopy samples, changes in TNF-α, IL-6, and NF-κB inflammation markers levels of expression, and evaluation of mRNA profiles. Histological and ultrastructural analysis revealed an increase in parenchymal and portal inflammation in mice and Kupffer cells activation. Combined antifungal treatment stimulated activation of an inflammatory pathway, demonstrated by a significant dose-dependent increase of TNF-αand IL-6 immunoreactivity, together with mRNA upregulation. Also, NF-κB was activated, as suggested by the high levels found in hepatic tissue and upregulation of target genes. Our results suggest that antifungal combined therapy exerts a synergistic inflammatory activation in a dose-dependent manner, through NF-κB pathway, which promotes an inflammatory cascade during inflammation. The use of combined antifungal therapy needs to be dose limiting due to the associated risk of liver injury, especially for those patients with hepatic dysfunction.


1997 ◽  
Vol 92 (2) ◽  
pp. 123-131 ◽  
Author(s):  
Masanari Shiramoto ◽  
Tsutomu Imaizumi ◽  
Yoshitaka Hirooka ◽  
Toyonari Endo ◽  
Takashi Namba ◽  
...  

1. It has been shown in animals that substance P as well as acetylcholine releases endothelium-derived nitric oxide and evokes vasodilatation and that ATP-induced vasodilatation is partially mediated by nitric oxide. The aim of this study was to examine whether vasodilator effects of substance P and ATP are mediated by nitric oxide in humans. 2. In healthy volunteers (n = 35), we measured forearm blood flow by a strain-gauge plethysmograph while infusing graded doses of acetylcholine, substance P, ATP or sodium nitroprusside into the brachial artery before and after infusion of NG-monomethyl-l-arginine (4 or 8 μmol/min for 5 min). In addition, we measured forearm blood flow while infusing substance P before and during infusion of l-arginine (10 mg/min, simultaneously), or before and 1 h after oral administration of indomethacin (75 mg). 3. Acetylcholine, substance P, ATP or sodium nitroprusside increased forearm blood flow in a dose-dependent manner. NG-Monomethyl-l-arginine decreased basal forearm blood flow and inhibited acetylcholine-induced vasodilatation but did not affect substance P-, ATP-, or sodium nitroprusside-induced vasodilatation. Neither supplementation of l-arginine nor pretreatment with indomethacin affected substance P-induced vasodilatation. 4. Our results suggest that, in the human forearm vessels, substance P-induced vasodilatation may not be mediated by either nitric oxide or prostaglandins and that ATP-induced vasodilatation may also not be mediated by nitric oxide.


1998 ◽  
Vol 275 (3) ◽  
pp. H988-H994 ◽  
Author(s):  
William M. Armstead

Nitric oxide (NO), opioids, and ATP-sensitive K+(KATP) channel activation contribute to hypoxia-induced pial artery dilation. NO releasers and cGMP analogs increase opioid concentration in cerebrospinal fluid (CSF) and elicit dilation via KATPchannel activation. Opioids themselves also elicit dilation via KATP channel activation. This study was designed to investigate the relationships among the above mechanisms in hypoxic pial artery dilation using newborn pigs equipped with a closed cranial window. Cromakalim (10−8 and 10−6 M), a KATP agonist, produced dilation that was unchanged by the NO synthase inhibitor N-nitro-l-arginine (l-NNA, 10−6 and 10−3 M): 13 ± 1 and 31 ± 1 vs. 14 ± 1 and 31 ± 1% before and after 10−3 Ml-NNA. Cromakalim dilation also was not associated with increased CSF cGMP and was unchanged by the Rp diastereomer of 8-bromoguanosine 3′,5′-cyclic monophosphothioate, a cGMP antagonist. Glibenclamide (10−6 M), a KATP antagonist, attenuated hypoxic dilation but hypoxia-associated CSF cGMP release was unchanged: 457 ± 12 and 935 ± 30 vs. 458 ± 11 and 921 ± 22 fmol/ml. Coadministration ofl-NNA with glibenclamide had no further effect on the already diminished hypoxic dilation but blocked the hypoxia-associated rise in CSF cGMP. Cromakalim had no effect on CSF methionine enkephalin: 1,012 ± 28 and 1,062 ± 32 pg/ml. These data show that KATP channel agonists do not elicit dilation via NO/cGMP and do not release opioids. NO release during hypoxia also is independent of KATP channel activation. These data suggest that hypoxic dilation results from the sequential release of NO, cGMP, and opioids, which in turn activate the KATP channel.


1993 ◽  
Vol 138 (3) ◽  
pp. 429-435 ◽  
Author(s):  
K. Ohta ◽  
Y. Hirata ◽  
T. Imai ◽  
F. Marumo

ABSTRACT To elucidate whether anterior pituitary cells express the nitric oxide (NO) synthase gene, we studied the synthesis of NO and the expression of NO synthase (NOS) mRNA by a mouse pituitary tumour cell line (AtT20/D16). Interleukin-1β (IL-1β) stimulated production of NO2−/NO3− (NOx) in a time-dependent manner and both NOx and cyclic GMP formation were stimulated in a dose-dependent manner by IL-1β. IL-1β-induced NOx production and intracellular cyclic GMP formation were similarly blocked by an NO synthase inhibitor, NG-monomethyl-l-arginine (LNMMA), whose effect was reversed by l-arginine, but not by d-arginine. Dexamethasone inhibited IL-1β-induced NOx production in a dose-dependent manner. A calmodulin inhibitor (W-7) showed no effect on IL-1β-induced NOx production, whereas cycloheximide and the actinomycin D completely inhibited NOx production. Northern blot analysis using cDNA for mouse macrophage-inducible NOS as a probe revealed the expression of inducible NOS mRNA in the cells only after exposure to IL-1β. Although IL-1β stimulated ACTH release from tumour cells, LNMMA failed to affect ACTH release stimulated by IL-1β. These results demonstrate for the first time that a pituitary tumour cell line (AtT20/D16) possesses cytokine-inducible and Ca2+/calmodulin-independent NOS, although NO may not be involved in ACTH release. Journal of Endocrinology (1993) 138, 429–435


Sign in / Sign up

Export Citation Format

Share Document