Platelet-activating factor modulates pulmonary vasomotor tone in the perinatal lamb

1998 ◽  
Vol 85 (3) ◽  
pp. 1079-1085 ◽  
Author(s):  
Basil O. Ibe ◽  
Sue Hibler ◽  
J. Usha Raj

Eight near-term fetal lambs were studied acutely in utero to determine role of platelet-activating factor (PAF) in the regulation of vasomotor tone in systemic and pulmonary circulations in the immediate perinatal period. Four fetal lambs were studied predelivery and 2 h postdelivery to determine circulating PAF levels. Aortic and pulmonary arterial pressures and cardiac output were measured continuously, and systemic and pulmonary vascular resistances were calculated. Left pulmonary arterial blood flow was also measured in four fetal lambs. After delivery and oxygenation, circulating PAF levels fell significantly. When WEB-2170, a specific PAF-receptor antagonist, was infused to block effect of endogenous PAF in the eight near-term fetal lambs, systemic vascular resistance fell 30% but pulmonary vascular resistance fell dramatically by 68%. Specificity of WEB-2170 was tested in juvenile lambs and was found to be very specific in lowering vasomotor tone only when tone was elevated by action of PAF. Our data show that endogenous PAF levels in the fetus contribute to maintain a high basal systemic and pulmonary vasomotor tone and that a normal fall in circulating PAF levels after birth and oxygenation may facilitate fall in pulmonary vascular resistance at birth.

1961 ◽  
Vol 200 (2) ◽  
pp. 287-291 ◽  
Author(s):  
M. Harasawa ◽  
S. Rodbard

The effects of tetraethylammonium chloride (TEAC) and aminophylline on the pulmonary vascular resistance were studied in thoracotomized dogs. Pulmonary arterial blood flow and pressure, and systemic blood pressure were measured simultaneously. Both drugs showed marked hypotensive effects on the systemic vessels. In every instance pulmonary arterial pressures and blood flows were reduced by TEAC given via the pulmonary artery and increased by aminophylline. However, the calculated pulmonary vascular resistance remained essentially unchanged in all experiments. These data challenge the concept that the pulmonary vessels respond to these drugs by active vasodilatation


1987 ◽  
Vol 253 (4) ◽  
pp. H941-H948 ◽  
Author(s):  
S. H. Abman ◽  
F. J. Accurso ◽  
R. B. Wilkening ◽  
G. Meschia

To determine the effects of duration of hypoxia on fetal pulmonary blood flow and vasoreactivity, we studied the response of the fetal pulmonary vascular bed before, during, and after prolonged (2-h) and more brief (30-min) exposures to acute hypoxia in 19 chronically instrumented unanesthetized fetal lambs. Left pulmonary arterial blood flow was measured by an electromagnetic flow transducer. Fetal PO2 was lowered by delivering 10-12% O2 to the ewe. During 2-h periods of hypoxia left pulmonary arterial blood flow decreased, and main pulmonary arterial and pulmonary vascular resistance increased. The increase in pulmonary vascular resistance was sustained throughout the 2-h period of hypoxia. After the return of the ewe to room air breathing, pulmonary vascular resistance remained elevated for at least 1 h despite the rapid correction of hypoxemia and in the absence of acidemia. In contrast, after 30 min of hypoxia, left pulmonary arterial blood flow, pulmonary arterial pressure, and pulmonary vascular resistance returned to base-line values rapidly with the termination of hypoxia. The persistent pulmonary hypoperfusion after 2 h of hypoxia was attenuated by alpha-adrenergic blockade and was characterized by a blunted vasodilatory response to increases in fetal PO2. When fetal PO2 was elevated during the posthypoxia period in the presence of alpha-blockade, pulmonary blood flow still remained unresponsive to increases in fetal PO2. We conclude that 2-h periods of acute hypoxia can decrease fetal pulmonary vasoreactivity, and we speculate that related mechanisms may contribute to the failure of the normal adaptation of the pulmonary circulation at birth.


1994 ◽  
Vol 76 (3) ◽  
pp. 1350-1355 ◽  
Author(s):  
J. A. Romand ◽  
M. R. Pinsky ◽  
L. Firestone ◽  
H. A. Zar ◽  
J. R. Lancaster

Nitric oxide (NO) inhaled during a hypoxia-induced increase in pulmonary vasomotor tone decreases pulmonary arterial pressure (Ppa). We conducted this study to better characterize the hemodynamic effects induced by NO inhalation during hypoxic pulmonary vasoconstriction in 11 anesthetized ventilated dogs. Arterial and venous systemic and pulmonary pressures and aortic flow probe-derived cardiac output were recorded, and nitrosylhemoglobin (NO-Hb) and methemoglobin (MetHb) were measured. The effects of 5 min of NO inhalation at 0, 17, 28, 47, and 0 ppm during hyperoxia (inspiratory fraction of O2 = 0.5) and hypoxia (inspiratory fraction of O2 = 0.16) were observed. NO inhalation has no measurable effects during hyperoxia. Hypoxia induced an increase in Ppa that reached plateau levels after 5 min. Exposure to 28 and 47 ppm NO induced an immediate (< 30 s) decrease in Ppa and calculated pulmonary vascular resistance (P < 0.05 each) but did not return either to baseline hyperoxic values. Increasing the concentration of NO to 74 and 145 ppm in two dogs during hypoxia did not induce any further decreases in Ppa. Reversing hypoxia while NO remained at 47 ppm further decreased Ppa and pulmonary vascular resistance to baseline values. NO inhalation did not induce decreases in systemic arterial pressure. MetHb remained low, and NO-Hb was unmeasurable. We concluded that NO inhalation only partially reversed hypoxia-induced increases in pulmonary vasomotor tone in this canine model. These effects are immediate and selective to the pulmonary circulation.


1965 ◽  
Vol 208 (1) ◽  
pp. 130-138 ◽  
Author(s):  
G. J. A. Cropp

The resistance to blood flow in the pulmonary circulation of dogs (PVR) increased when their lungs were ventilated with 95–100% oxygen and were perfused with blood that recirculated only through the pulmonary circulation; the systemic circulation was perfused independently. This increase in PVR occurred even when nerves were cut or blocked but was abolished by inhaled isopropylarterenol aerosol. Elevation of intra-alveolar Po2 without increase in pulmonary arterial blood Po2 was sufficient to increase pulmonary vascular resistance. The pulmonary venules or veins were thought to be the likely site of the constriction. These reactions were qualitatively similar to those produced by injection of serotonin or histamine into the pulmonary circulation. The time course of the response and failure to obtain it when the blood was perfused through the remainder of the body before it re-entered the pulmonary circulation are compatible with a theory that high intra-alveolar O2 tension activates a vasoconstrictor material in the pulmonary parenchyma.


1985 ◽  
Vol 249 (2) ◽  
pp. H351-H357 ◽  
Author(s):  
R. F. Lodato ◽  
J. R. Michael ◽  
P. A. Murray

To characterize quantitatively the relationships among pulmonary vascular pressures (P) and cardiac output (Q) in conscious dogs, multipoint plots of pulmonary arterial (PAP), pulmonary capillary wedge (PCWP), PAP - PCWP, and left atrial (LAP) pressure versus Q were generated by graded constriction of the thoracic inferior vena cava (IVC) to vary Q. Slopes and extrapolated pressure intercepts from linear regression fits to the P/Q plots were determined for three inspired oxygen tensions: normoxia, hyperoxia, and hypoxia. During normoxia (arterial Po2 87 +/- 1 Torr), the extrapolated pressure intercepts for PAP, PCWP, and PAP - PCWP were virtually 0 mmHg, and for LAP, substantially negative (-5.5 +/- 1.1 mmHg; P less than 0.01). Hyperoxia (Po2 365 +/- 28 Torr) had no effect on any of the P/Q plots. In contrast, hypoxia (Po2 51 +/- 1 Torr) significantly increased the intercepts (P less than 0.01) as well as the slopes (P less than 0.05) of PAP and PAP - PCWP versus Q, but produced only minor changes in PCWP and LAP versus Q. These hypoxia-induced changes in intercepts, perhaps related to changes in critical closing pressures, demonstrate the limitations of pulmonary vascular resistance calculations (quotient of pressure gradient and Q) in quantifying changes in pulmonary vasomotor tone. In this way, the IVC constriction technique provides a more complete description of P/Q relationships than that permitted by simple calculations of pulmonary vascular resistance. We conclude that this technique can be utilized to investigate the effects of other physiological and pharmacological interventions on pulmonary vasomotor tone in conscious dogs.


1991 ◽  
Vol 70 (2) ◽  
pp. 778-787 ◽  
Author(s):  
F. J. Accurso ◽  
S. H. Abman ◽  
R. B. Wilkening ◽  
G. S. Worthen ◽  
P. Henson

To determine the fetal pulmonary vascular response to platelet-activating factor (PAF), we studied the hemodynamic effects of the infusion of PAF directly into the left pulmonary artery in 21 chronically catheterized fetal lambs. Left pulmonary arterial blood flow (Q) was measured with electromagnetic flow transducers. Ten-minute infusions of low-dose PAF (10-100 ng/min) produced increases in Q from a baseline of 71 +/- 5 to 207 +/- 20 ml/min (P less than 0.001) without changes in pulmonary arterial pressure. Pulmonary vasodilation with PAF was further confirmed through increases in Q with brief (15-s) infusions and increases in the slope of the pressure-flow relationship as assessed by rapid incremental compressions of the ductus arteriosus during PAF infusion. Infusion of Lyso-PAF had no effect on Q or pulmonary arterial pressure. Treatment with CV-3988, a selective PAF receptor antagonist, but not with meclofenamate, atropine, or diphenhydramine and cimetidine blocked the response to PAF infusion and did not affect baseline tone. Systemic infusion of high-dose PAF (300 ng/min) through the fetal inferior vena cava increased pulmonary arterial pressure (46.5 +/- 1.0 to 54.8 +/- 1.9 mmHg, P less than 0.01) and aorta pressure (44.3 +/- 1.0 to 52.7 +/- 2.2 mmHg, P less than 0.01) while also increasing Q. Neither PAF nor CV-3988 changed the gradient between pulmonary arterial and aorta pressures, suggesting that PAF does not affect ductal tone. We conclude that PAF is a potent fetal pulmonary vasodilator and that the effects are not mediated through cyclooxygenase products or by cholinergic or histaminergic effects.


1977 ◽  
Vol 42 (4) ◽  
pp. 519-524 ◽  
Author(s):  
M. Friedman ◽  
A. Wanner

The volumes of the extraparenchymal segment (VpaEP) and intraparenchymal segment (VpaIP) of the pulmonary arterial tree were determined in intact anesthetized dogs during room air breathing and acute hypoxia. Total pulmonary arterial blood volume (Vpatotal) was calculated as the product of pulmonary blood flow and pulmonary arterial circulation time. An angiographic technique was used to estimate VpEP. VpaIP was calculated by subtracting VpaEP from Vpatotal. During room air breathing at functional residual capacity, mean +/- SD of VpaEP was 17.1 +/- 5.1 ml and of VpaIP was 31.7 +/- 20.8 ml, representing 40% and 60%, respectively, of Vpatotal. Vpatotal increased 22.2 +/- 10.5 ml during lung inflation, with proportional increases in VpaIP and VpaEP. VpaEP was found to be influenced equally by changes in transmural pulmonary arterial and transpulmonary pressures. Acute hypoxia was accompanied by an increase in pulmonary vascular resistance and a decrease in volume distensibility of the extraparenchymal segment. Vpatotal increased 76% without changes in the relative volume distribution of VpaEP and VpaIP. These findings can be best explained by active vasomotion with an increase in down-stream pulmonary vascular resistance.


1995 ◽  
Vol 269 (6) ◽  
pp. H2090-H2099 ◽  
Author(s):  
M. J. Murray ◽  
M. Kumar ◽  
T. J. Gregory ◽  
P. L. Banks ◽  
H. D. Tazelaar ◽  
...  

We examined the effect of substituting linoleic acid (LA) with eicosapentaenoic acid (EPA) and gamma-linolenic acid (gamma-LA), precursors of trienoic and monoenoic eicosanoids, respectively, on acute lung injury (ALI). Three groups (n = 8/group) of pigs were fed enteral diets containing LA (diet A), EPA (diet B), or EPA+gamma-LA (diet C) for 8 days. ALI was then induced with a 0.1 mg/kg bolus of Escherichia coli endotoxin followed by a continuous infusion for 4 h (0.075 mg.kg-1.h-1). Pulmonary arterial and capillary wedge pressures, cardiac index (CI), arterial blood gases, arterial O2 content, and plasma thromboxane B2 (TxB2) were measured. Arterial PO2 decreased at 20 min in animals fed diet A. This change was attenuated with diets B and C. The EPA- and EPA + gamma-LA-enriched diets attenuated the fall in O2 delivery at 20 min, an improvement that was sustained throughout the 4-h study period with the EPA+gamma-LA-enriched diet only. This improvement in O2 delivery was due not only to the improved arterial PO2, but also to the maintenance of CI at 20 min in animals fed diets B and C and throughout the 4-h study period in animals fed diet C. At 4 h, TxB2 increased 10-fold over baseline in animals fed diet A, whereas in animals fed diets B and C the increase was only 3-fold. These decreased TxB2 levels in animals fed diets B and C correlate with an attenuation in the increase in pulmonary vascular resistance that was observed at 20 min after endotoxin infusion in animals fed diet A. These data suggest that specialized enteral diets enriched in EPA+gamma-LA improve gas exchange and O2 delivery, presumably in part through a modification of TxB2 production with a decrease in pulmonary vascular resistance and an increase in CI, during ALI.


Children ◽  
2021 ◽  
Vol 8 (5) ◽  
pp. 353
Author(s):  
Jayasree Nair ◽  
Lauren Davidson ◽  
Sylvia Gugino ◽  
Carmon Koenigsknecht ◽  
Justin Helman ◽  
...  

The optimal timing of cord clamping in asphyxia is not known. Our aims were to determine the effect of ventilation (sustained inflation–SI vs. positive pressure ventilation–V) with early (ECC) or delayed cord clamping (DCC) in asphyxiated near-term lambs. We hypothesized that SI with DCC improves gas exchange and hemodynamics in near-term lambs with asphyxial bradycardia. A total of 28 lambs were asphyxiated to a mean blood pressure of 22 mmHg. Lambs were randomized based on the timing of cord clamping (ECC—immediate, DCC—60 s) and mode of initial ventilation into five groups: ECC + V, ECC + SI, DCC, DCC + V and DCC + SI. The magnitude of placental transfusion was assessed using biotinylated RBC. Though an asphyxial bradycardia model, 2–3 lambs in each group were arrested. There was no difference in primary outcomes, the time to reach baseline carotid blood flow (CBF), HR ≥ 100 bpm or MBP ≥ 40 mmHg. SI reduced pulmonary (PBF) and umbilical venous (UV) blood flow without affecting CBF or umbilical arterial blood flow. A significant reduction in PBF with SI persisted for a few minutes after birth. In our model of perinatal asphyxia, an initial SI breath increased airway pressure, and reduced PBF and UV return with an intact cord. Further clinical studies evaluating the timing of cord clamping and ventilation strategy in asphyxiated infants are warranted.


Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 779
Author(s):  
Daria S. Kostyunina ◽  
Paul McLoughlin

Pulmonary hypertension (PH) is a condition characterised by an abnormal elevation of pulmonary artery pressure caused by an increased pulmonary vascular resistance, frequently leading to right ventricular failure and reduced survival. Marked sexual dimorphism is observed in patients with pulmonary arterial hypertension, a form of pulmonary hypertension with a particularly severe clinical course. The incidence in females is 2–4 times greater than in males, although the disease is less severe in females. We review the contribution of the sex chromosomes to this sex dimorphism highlighting the impact of proteins, microRNAs and long non-coding RNAs encoded on the X and Y chromosomes. These genes are centrally involved in the cellular pathways that cause increased pulmonary vascular resistance including the production of reactive oxygen species, altered metabolism, apoptosis, inflammation, vasoconstriction and vascular remodelling. The interaction with genetic mutations on autosomal genes that cause heritable pulmonary arterial hypertension such as bone morphogenetic protein 2 (BMPR2) are examined. The mechanisms that can lead to differences in the expression of genes located on the X chromosomes between females and males are also reviewed. A better understanding of the mechanisms of sex dimorphism in this disease will contribute to the development of more effective therapies for both women and men.


Sign in / Sign up

Export Citation Format

Share Document