scholarly journals A Methodological Framework to Capture Neuromuscular Fatigue Mechanisms Under Stress

2021 ◽  
Vol 2 ◽  
Author(s):  
Oshin Tyagi ◽  
Ranjana K. Mehta

Neuromuscular fatigue is exacerbated under stress and is characterized by shorter endurance time, greater perceived effort, lower force steadiness, and higher electromyographic activity. However, the underlying mechanisms of fatigue under stress are not well-understood. This review investigated existing methods of identifying central mechanisms of neuromuscular fatigue and the potential mechanisms of the influence of stress on neuromuscular fatigue. We found that the influence of stress on the activity of the prefrontal cortex, which are also involved in exercise regulation, may contribute to exacerbated fatigue under stress. We also found that the traditional methods involve the synchronized use of transcranial magnetic stimulation, peripheral nerve stimulation, and electromyography to identify the contribution of supraspinal fatigue, through measures such as voluntary activation, motor evoked potential, and silent period. However, these popular techniques are unable to provide information about neural alterations upstream of the descending drive that may contribute to supraspinal fatigue development. To address this gap, we propose that functional brain imaging techniques, which provide insights on activation and information flow between brain regions, need to be combined with the traditional measures of measuring central fatigue to fully understand the mechanisms behind the influence of stress on fatigue.

2012 ◽  
Vol 113 (2) ◽  
pp. 215-223 ◽  
Author(s):  
Mark Burnley ◽  
Anni Vanhatalo ◽  
Andrew M. Jones

Whether the transition in fatigue processes between “low-intensity” and “high-intensity” contractions occurs gradually, as the torque requirements are increased, or whether this transition occurs more suddenly at some identifiable “threshold”, is not known. We hypothesized that the critical torque (CT; the asymptote of the torque-duration relationship) would demarcate distinct profiles of central and peripheral fatigue during intermittent isometric quadriceps contractions (3-s contraction, 2-s rest). Nine healthy men performed seven experimental trials to task failure or for up to 60 min, with maximal voluntary contractions (MVCs) performed at the end of each minute. The first five trials were performed to determine CT [∼35–55% MVC, denoted severe 1 (S1) to severe 5 (S5) in ascending order], while the remaining two trials were performed 10 and 20% below the CT (denoted CT-10% and CT-20%). Dynamometer torque and the electromyogram of the right vastus lateralis were sampled continuously. Peripheral and central fatigue was determined from the fall in potentiated doublet torque and voluntary activation, respectively. Above CT, contractions progressed to task failure in ∼3–18 min, at which point the MVC did not differ from the target torque (S1 target, 88.7 ± 4.3 N·m vs. MVC, 89.3 ± 8.8 N·m, P = 0.94). The potentiated doublet fell significantly in all trials, and voluntary activation was reduced in trials S1–S3, but not trials S4 and S5. Below CT, contractions could be sustained for 60 min on 17 of 18 occasions. Both central and peripheral fatigue developed, but there was a substantial reserve in MVC torque at the end of the task. The rate of global and peripheral fatigue development was four to five times greater during S1 than during CT-10% (change in MVC/change in time S1 vs. CT-10%: −7.2 ± 1.4 vs. −1.5 ± 0.4 N·m·min−1). These results demonstrate that CT represents a critical threshold for neuromuscular fatigue development.


2012 ◽  
Vol 112 (5) ◽  
pp. 849-858 ◽  
Author(s):  
Tejin Yoon ◽  
Bonnie Schlinder-Delap ◽  
Manda L. Keller ◽  
Sandra K. Hunter

This study determined the contribution of supraspinal fatigue and contractile properties to the age difference in neuromuscular fatigue during and recovery from a low-intensity sustained contraction. Cortical stimulation was used to evoke measures of voluntary activation and muscle relaxation during and after a contraction sustained at 20% of maximal voluntary contraction (MVC) until task failure with elbow flexor muscles in 14 young adults (20.9 ± 3.6 yr, 7 men) and 14 old adults (71.6 ± 5.4 yr, 7 men). Old adults exhibited a longer time to task failure than the young adults (23.8 ± 9.0 vs. 11.5 ± 3.9 min, respectively, P < 0.001). The time to failure was associated with initial peak rates of relaxation of muscle fibers and pressor response ( P < 0.05). Increments in torque (superimposed twitch; SIT) generated by transcranial magnetic stimulation (TMS) during brief MVCs, increased during the fatiguing contraction ( P < 0.001) and then decreased during recovery ( P = 0.02). The increase in the SIT was greater for the old adults than the young adults during the fatiguing contraction and recovery ( P < 0.05). Recovery of MVC torque was less for old than young adults at 10 min post-fatiguing contraction (75.1 ± 8.7 vs. 83.6 ± 7.8% of control MVC, respectively, P = 0.01) and was associated with the recovery of the SIT ( r = −0.59, r2 = 0.35, P < 0.001). Motor evoked potential (MEP) amplitude and the silent period elicited during the fatiguing contraction increased less for old adults than young adults ( P < 0.05). The greater fatigue resistance with age during a low-intensity sustained contraction was attributable to mechanisms located within the muscle. Recovery of maximal strength after the low-intensity fatiguing contraction however, was impeded more for old adults than young because of greater supraspinal fatigue. Recovery of strength could be an important variable to consider in exercise prescription of old populations.


2018 ◽  
Vol 125 (4) ◽  
pp. 1246-1256 ◽  
Author(s):  
Enzo Piponnier ◽  
Vincent Martin ◽  
Bastien Bontemps ◽  
Emeric Chalchat ◽  
Valérie Julian ◽  
...  

The aim of the present study was to compare the development and etiology of neuromuscular fatigue of the knee extensor (KE) and plantar flexor (PF) muscles during repeated maximal voluntary isometric contractions (MVICs) between children and adults. Prepubertal boys ( n = 21; 9–11 yr) and men ( n = 24; 18–30 yr) performed two fatigue protocols consisting of a repetition of 5-s isometric MVIC of the KE or PF muscles interspersed with 5-s passive recovery periods until MVIC reached 60% of its initial value. The etiology of neuromuscular fatigue of the KE and PF muscles was investigated by means of noninvasive methods, such as the surface electromyography, single and doublet magnetic stimulation, twitch interpolation technique, and near-infrared spectroscopy. The number of repetitions performed was significantly lower in men (15.4 ± 3.8) than boys (38.7 ± 18.8) for the KE fatigue test. In contrast, no significant difference was found for the PF muscles between boys and men (12.1 ± 4.9 and 13.8 ± 4.9 repetitions, respectively). Boys displayed a lower reduction in potentiated twitch torque, low-frequency fatigue, and muscle oxygenation than men whatever the muscle group considered. In contrast, voluntary activation level and normalized electromyography data decreased to a greater extent in boys than men for both muscle groups. To conclude, boys experienced less peripheral and more central fatigue during repeated MVICs than men whatever the muscle group considered. However, child-adult differences in neuromuscular fatigue were muscle-dependent since boys fatigued similarly to men with the PF muscles and to a lower extent with the KE muscles. NEW & NOTEWORTHY Child-adult differences in neuromuscular fatigue during repeated maximal voluntary contractions are specific to the muscle group since children fatigue similarly to adults with the plantar flexor muscles and to a lower extent with the knee extensor muscles. Children experience less peripheral fatigue and more central fatigue than adults, regardless of the muscle group considered.


2018 ◽  
Vol 43 (4) ◽  
pp. 317-323 ◽  
Author(s):  
Saied J. Aboodarda ◽  
Rebecca M. Greene ◽  
Devin T. Philpott ◽  
Ramandeep S. Jaswal ◽  
Guillaume Y. Millet ◽  
...  

The aim of the present study was to investigate the alterations of corticospinal excitability (motor evoked potential, MEP) and inhibition (silent period, SP) following rolling massage of the quadriceps muscles. Transcranial magnetic and femoral nerve electrical stimuli were used to elicit MEPs and compound muscle action potential (Mmax) in the vastus lateralis and vastus medialis muscles prior to and following either (i) 4 sets of 90-s rolling massage (ROLLING) or (ii) rest (CONTROL). One series of neuromuscular evaluations, performed after each set of ROLLING or CONTROL, included 3 MEPs and 1 Mmax elicited every 4 s during 15-s submaximal contractions at 10% (experiment 1, n = 16) and 50% (experiment 2, n = 10) of maximal voluntary knee extensions (MVC). The MEP/Mmax ratio and electromyographic activity recorded from vastus lateralis at 10% MVC demonstrated significantly lower values during ROLLING than CONTROL (P < 0.05). The ROLLING did not elicit any significant changes in muscle excitability (Mmax area) and duration of transcranial magnetic stimulation-induced SP recorded from any muscle or level of contraction (P > 0.05). The findings suggest that rolling massage can modulate the central excitability of the circuitries innervating the knee extensors; however, the observed effects are dependent on the background contraction intensity during which the neuromuscular measurements are recorded.


2018 ◽  
Vol 43 (5) ◽  
pp. 427-436 ◽  
Author(s):  
Robin Souron ◽  
Thibault Besson ◽  
Thomas Lapole ◽  
Guillaume Y. Millet

This study investigated the effects of a 4-week local vibration training (LVT) on the function of the knee extensors and corticospinal properties in healthy young and older subjects. Seventeen subjects (9 young and 8 older) performed 3 testing sessions: before (PRE1) and after (PRE2) a 4-week resting period to control the repeatability of the data as well as after the LVT (POST). Jump performance, maximal voluntary contraction (MVC) and electromyographic (EMG) activity on vastus lateralis and rectus femoris muscles were assessed. Single-pulse transcranial magnetic stimulation (TMS) allowed evaluation of cortical voluntary activation (VATMS), motor evoked potential (MEP) area, and silent period (SP) duration. All training adaptations were similar between young and older subjects (p > 0.05) and the following results reflect the pooled sample of subjects. MVC (+11.9% ± 8.0%, p < 0.001) and VATMS (+3.6% ± 5.2%, p = 0.004) were significantly increased at POST compared with PRE2. Maximal vastus lateralis EMG was significantly increased at POST (+21.9% ± 33.7%, p = 0.03). No changes were reported for MEPs on both muscles (p > 0.05). SPs recorded during maximal and submaximal contractions decreased in both muscles at POST (p < 0.05). Vertical jump performance was increased at POST (p < 0.05). LVT seems as effective in young as in older subjects to improve maximal functional capacities through neural modulations occurring at least partly at the supra-spinal level. Local vibration may be used as an efficient alternative training method to improve muscular performance in both healthy young and older subjects.


2017 ◽  
Vol 122 (6) ◽  
pp. 1504-1515 ◽  
Author(s):  
Robin Souron ◽  
Adrien Farabet ◽  
Léonard Féasson ◽  
Alain Belli ◽  
Guillaume Y. Millet ◽  
...  

The aim of this study was to evaluate the effects of an 8-wk local vibration training (LVT) program on functional and corticospinal properties of dorsiflexor muscles. Forty-four young subjects were allocated to a training (VIB, n = 22) or control (CON, n = 22) group. The VIB group performed twenty-four 1-h sessions (3 sessions/wk) of 100-Hz vibration applied to the right tibialis anterior. Both legs were tested in each group before training (PRE), after 4 (MID) and 8 (POST) wk of training, and 2 wk after training (POST2W). Maximal voluntary contraction (MVC) torque was assessed, and transcranial magnetic stimulation (TMS) was used to evaluate cortical voluntary activation (VATMS), motor evoked potential (MEP), cortical silent period (CSP), and input-output curve parameters. MVC was significantly increased for VIB at MID for right and left legs [+7.4% ( P = 0.001) and +6.2% ( P < 0.01), respectively] and remained significantly greater than PRE at POST [+12.0% ( P < 0.001) and +10.1% ( P < 0.001), respectively]. VATMS was significantly increased for right and left legs at MID [+4.4% ( P < 0.01) and +4.7% ( P < 0.01), respectively] and at POST [+4.9% ( P = 0.001) and +6.2% ( P = 0.001), respectively]. These parameters remained enhanced in both legs at POST2W. MEP and CSP recorded during MVC and input-output curve parameters did not change at any time point for either leg. Despite no changes in excitability or inhibition being observed, LVT seems to be a promising method to improve strength through an increase of maximal voluntary activation, i.e., neural adaptations. Local vibration may thus be further considered for clinical or aging populations. NEW & NOTEWORTHY The effects of a local vibration training program on cortical voluntary activation measured with transcranial magnetic stimulation were assessed for the first time in dorsiflexors, a functionally important muscle group. We observed that training increased maximal voluntary strength likely because of the strong and repeated activation of Ia spindle afferents during vibration training that led to changes in the cortico-motoneuronal pathway, as demonstrated by the increase in cortical voluntary activation.


Author(s):  
Ryan Norbury ◽  
Samuel A. Smith ◽  
Mark Burnley ◽  
Megan Judge ◽  
Alexis R. Mauger

Abstract Purpose Muscle pain can impair exercise performance but the mechanisms for this are unknown. This study examined the effects of muscle pain on neuromuscular fatigue during an endurance task. Methods On separate visits, twelve participants completed an isometric time-to-task failure (TTF) exercise of the right knee extensors at ~ 20% of maximum force following an intramuscular injection of isotonic saline (CTRL) or hypertonic saline (HYP) into the vastus lateralis. Measures of neuromuscular fatigue were taken before, during and after the TTF using transcranial magnetic stimulation (TMS) and peripheral nerve stimulation. Results The mean pain intensity was 57 ± 10 in HYP compared to 38 ± 18 in CTRL (P < 0.001). TTF was reduced in HYP (4.36 ± 0.88 min) compared to CTRL (5.20 ± 0.39 min) (P = 0.003). Maximum voluntary force was 12% lower at minute 1 (P = 0.003) and 11% lower at minute 2 in HYP (P = 0.013) compared to CTRL. Voluntary activation was 4% lower at minute 1 in HYP compared to CTRL (P = 0.006) but not at any other time point (all P > 0.05). The TMS silent period was 9% longer at 100 s during the TTF in HYP compared to CTRL (P = 0.026). Conclusion Muscle pain reduces exercise performance through the excacerbation of neuromuscular fatigue that is central in origin. This appears to be from inhibitory feedback from group III/IV nociceptors which acts to reduce central motor output.


2006 ◽  
Vol 101 (4) ◽  
pp. 1036-1044 ◽  
Author(s):  
Sandra K. Hunter ◽  
Jane E. Butler ◽  
Gabrielle Todd ◽  
Simon C. Gandevia ◽  
Janet L. Taylor

Young women are less fatigable than young men for maximal and submaximal contractions, but the contribution of supraspinal fatigue to the sex difference is not known. This study used cortical stimulation to compare the magnitude of supraspinal fatigue during sustained isometric maximal voluntary contractions (MVCs) performed with the elbow flexor muscles of young men and women. Eight women (25.6 ± 3.6 yr, mean ± SD) and 9 men (25.4 ± 3.8 yr) performed six sustained MVCs (22-s duration each, separated by 10 s). Before the fatiguing contractions, the men were stronger than the women (75.9 ± 9.2 vs. 42.7 ± 8.0 N·m; P < 0.05) in control MVCs. Voluntary activation measured with cortical stimulation before fatigue was similar for the men and women during the final control MVC (95.7 ± 3.0 vs. 93.3 ± 3.6%; P > 0.05) and at the start of the fatiguing task ( P > 0.05). By the end of the six sustained fatiguing MVCs, the men exhibited greater absolute and relative reductions in torque (65 ± 3% of initial MVC) than the women (52 ± 9%; P < 0.05). The increments in torque (superimposed twitch) generated by motor cortex stimulation during each 22-s maximal effort increased with fatigue ( P < 0.05). Superimposed twitches were similar for men and women throughout the fatiguing task (5.5 ± 4.1 vs. 7.3 ± 4.7%; P > 0.05), as well as in the last sustained contraction (7.8 ± 5.9 vs. 10.5 ± 5.5%) and in brief recovery MVCs. Voluntary activation determined using an estimated control twitch was similar for the men and women at the start of the sustained maximal contractions (91.4 ± 7.4 vs. 90.4 ± 6.8%, n = 13) and end of the sixth contraction (77.2 ± 13.3% vs. 73.1 ± 19.6%, n = 10). The increase in the area of the motor-evoked potential and duration of the silent period did not differ for men and women during the fatiguing task. However, estimated resting twitch amplitude and the peak rates of muscle relaxation showed greater relative reductions at the end of the fatiguing task for the men than the women. These results indicate that the sex difference in fatigue of the elbow flexor muscles is not explained by a difference in supraspinal fatigue in men and women but is largely due to a sex difference of mechanisms located within the elbow flexor muscles.


2000 ◽  
Vol 89 (1) ◽  
pp. 305-313 ◽  
Author(s):  
Janet L. Taylor ◽  
Gabrielle M. Allen ◽  
Jane E. Butler ◽  
S. C. Gandevia

Responses to transcranial magnetic stimulation in human subjects ( n = 9) were studied during series of intermittent isometric maximal voluntary contractions (MVCs) of the elbow. Stimuli were given during MVCs in four fatigue protocols with different duty cycles. As maximal voluntary torque fell during each protocol, the torque increment evoked by cortical stimulation increased from ∼1.5 to 7% of ongoing torque. Thus “supraspinal” fatigue developed in each protocol. The motor evoked potential (MEP) and silent period in the elbow flexor muscles also changed. The silent period lengthened by 20–75 ms (lowest to highest duty cycle protocol) and recovered significantly with a 5-s rest. The MEP increased in area by >50% in all protocols and recovered significantly with 10 s, but not 5 s, of rest. These changes are similar to those during sustained MVC. The central fatigue demonstrated by the torque increments evoked by the stimuli did not parallel the changes in the electromyogram responses. This suggests that part of the fatigue developed during intermittent exercise is “upstream” of the motor cortex.


2008 ◽  
Vol 105 (4) ◽  
pp. 1199-1209 ◽  
Author(s):  
Sandra K. Hunter ◽  
Gabrielle Todd ◽  
Jane E. Butler ◽  
Simon C. Gandevia ◽  
Janet L. Taylor

This study compared the contribution of supraspinal fatigue to muscle fatigue in old and young adults. Transcranial magnetic stimulation (TMS) of motor cortex was used to assess voluntary activation during maximal voluntary contractions (MVCs) of elbow flexor muscles in 17 young adults (25.5 ± 3.6 yr; mean ± SD) and 7 old adults (73.0 ± 3.3 yr). Subjects performed a fatigue task involving six sustained MVCs (22-s duration, separated by 10 s). Young adults exhibited greater reductions in maximal voluntary torque (67 ± 15% of baseline) than the old (37 ± 6%; P < 0.001). Increments in torque (superimposed twitch) generated by TMS during sustained MVCs increased for the young and old ( P < 0.001) but were larger for the old adults at the start of the sustained contractions and during recovery ( P < 0.05). Voluntary activation was less for the old adults at the start of some sustained contractions and during recovery ( P = 0.02). Motor-evoked potential area increased similarly with age during the fatiguing task but was greater for the old adults than young during recovery. Silent period duration lengthened less for the old adults during the fatigue task. At the end of the fatiguing task, peak relaxation rate of muscle fibers had declined more in the young than the old adults. The greater endurance with age is largely due to a difference in mechanisms located within the muscle. However, recovery from the fatiguing exercise is impaired for old adults because of greater supraspinal fatigue than in the young.


Sign in / Sign up

Export Citation Format

Share Document