Selected Contribution: Association of gender-related LMP2 inactivation with autoimmune pathogenesis

2001 ◽  
Vol 91 (6) ◽  
pp. 2804-2815 ◽  
Author(s):  
Takuma Hayashi ◽  
Denise L. Faustman

Recent results in an animal model of autoimmune diabetes, the nonobese diabetic (NOD) mouse, suggest a hypothesis to explain the role of major histocompatibility complex (MHC) in autoimmunity. The genome MHC region contains immune response genes that are important for T cell education and antigen presentation by MHC molecules. Two such genes encoding the LMP2 and LMP7 proteasome subunits are located in this high-risk MHC genomic region. Proteasome containing the LMP2 subunit is essential for T cell education and proteolytically activates transcription factor nuclear factor-κB. Splenocytes of NOD mouse with marked female specificity for disease expression are defective in LMP2 expression. The spontaneous defective LMP2 expression in NOD mice, which is gender biased toward female cohorts, is restricted to select lymphoid and myeloid cells and is developmentally controlled with lowered LMP2 protein and heightened tumor necrosis factor-α-induced apoptosis. These defects are apparent only after ∼7 wk of age. These data suggest a proteasome role in autoimmune progression, and a gender developmental and lineage restriction of LMP2 expression may contribute to the diverse autoimmune characteristics preferentially observed in female NOD mice.

1992 ◽  
Vol 176 (1) ◽  
pp. 67-77 ◽  
Author(s):  
L S Wicker ◽  
M C Appel ◽  
F Dotta ◽  
A Pressey ◽  
B J Miller ◽  
...  

The development of autoimmune diabetes in the nonobese diabetic (NOD) mouse is controlled by multiple genes. At least one diabetogenic gene is linked to the major histocompatibility complex (MHC) of the NOD and is most likely represented by the two genes encoding the alpha and beta chains of the unique NOD class II molecule. Three other diabetogenic loci have recently been identified in the NOD mouse and are located on chromosomes 1, 3, and 11. In addition to the autoimmune diabetes which is caused by destruction of the insulin-producing beta cells in the pancreas, other manifestations of autoimmunity are seen in the NOD mouse. These include mononuclear cell inflammation of the submandibular and lacrimal glands, as well as the presence of circulating autoantibodies. To determine the effect of the non-MHC diabetogenic genes on the development of autoimmunity, we constructed the NOD.B10-H-2b (NOD.H-2b) strain, which possesses the non-MHC diabetogenic genes from the NOD mouse, but derives its MHC from the C57BL/10 (B10) strain. The NOD.H-2b strain does not develop insulitis, cyclophosphamide-induced diabetes, or spontaneous diabetes. It does, however, develop extensive lymphocytic infiltrates in the pancreas and the submandibular glands that are primarily composed of Thy 1.2+ T cells and B220+ B cells. In addition, autoantibodies are present in NOD.H-2b mice which recognize the "polar antigen" on the insulin-secreting rat tumor line RINm38. These observations demonstrate that the non-MHC genes in the NOD strain, in the absence of the NOD MHC, significantly contribute to the development of autoimmunity. The contribution of a single dose of the NOD MHC to autoimmunity was assessed with a (NOD x NOD.H-2b)F1 cross. Although only approximately 3% of F1 females developed spontaneous diabetes, approximately 50% of both female and male F1 mice developed insulitis, and 25% of females and 17% of males became diabetic after treatment with cyclophosphamide. These data demonstrate that the MHC-linked diabetogenic genes of the NOD mouse are dominant with decreasing levels of penetrance for the following phenotypes: insulitis greater than cyclophosphamide-induced diabetes greater than spontaneous diabetes.


2005 ◽  
Vol 21 (2) ◽  
pp. 201-211 ◽  
Author(s):  
Sankaranand S. Vukkadapu ◽  
Jenine M. Belli ◽  
Koji Ishii ◽  
Anil G. Jegga ◽  
John J. Hutton ◽  
...  

In type 1 diabetes mellitus (T1DM), also known as autoimmune diabetes, the pathogenic destruction of the insulin-producing pancreatic β-cells is under the control of and influenced by distinct subsets of T lymphocytes. To identify the critical genes expressed by autoimmune T cells, antigen presenting cells, and pancreatic β-cells during the evolution of T1DM in the nonobese diabetic (NOD) mouse, and the genetically-altered NOD mouse (BDC/N), we used functional genomics. Microarray analysis revealed increased transcripts of genes encoding inflammatory cytokines, particularly interleukin (IL)-17, and islet cell regenerating genes, Reg3α, Reg3β, and Reg3γ. Our data indicate that progression to insulitis was connected to marked changes in islet antigen expression, β-cell differentiation, and T cell activation and signaling, all associated with tumor necrosis factor-α and IL-6 expression. Overt diabetes saw a clear shift in cytokine, chemokine, and T cell differentiation factor expression, consistent with a focused Th1 response, as well as a significant upregulation in genes associated with cellular adhesion, homing, and apoptosis. Importantly, the temporal pattern of expression of key verified genes suggested that T1DM develops in a relapsing/remitting as opposed to a continuous fashion, with insulitis linked to hypoxia-regulated gene control and diabetes with C/EBP and Nkx2 gene control.


FEBS Letters ◽  
2003 ◽  
Vol 546 (2-3) ◽  
pp. 379-384 ◽  
Author(s):  
Min Kyung Kim ◽  
Yoon-La Choi ◽  
Min Kyung Kim ◽  
Seok-Hyung Kim ◽  
Eun Young Choi ◽  
...  

2007 ◽  
Vol 67 (1) ◽  
pp. 362-370 ◽  
Author(s):  
Sankar Bhattacharyya ◽  
Debaprasad Mandal ◽  
Gouri Sankar Sen ◽  
Suman Pal ◽  
Shuvomoy Banerjee ◽  
...  

1991 ◽  
Vol 21 (5) ◽  
pp. 1163-1169 ◽  
Author(s):  
Pascal Sempé ◽  
Pierre Bédossa ◽  
Marie-Francoise Richard ◽  
Maria-Carme Villà ◽  
Jean-Francois Bach ◽  
...  

1993 ◽  
Vol 148 (1) ◽  
pp. 189-197 ◽  
Author(s):  
Mitsunobu Matsumoto ◽  
Hideki Yagi ◽  
Kikuko Kunimoto ◽  
Junko Kawaguchi ◽  
Susumu Makino ◽  
...  

2007 ◽  
Vol 123 ◽  
pp. S27 ◽  
Author(s):  
Brian T. Fife ◽  
Indira Guleria ◽  
Melanie Bupp ◽  
Qizhi Tang ◽  
Todd Eagar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document