Exercise training enhances baroreflex control of heart rate by a vagal mechanism in rabbits with heart failure

2002 ◽  
Vol 92 (6) ◽  
pp. 2403-2408 ◽  
Author(s):  
Jun-Li Liu ◽  
Jay Kulakofsky ◽  
Irving H. Zucker

Moderate exercise training (Ex) enhances work capacity and quality of life in patients with chronic heart failure (CHF). We investigated the autonomic components of resting heart rate (HR) and the baroreflex control of HR in conscious, instrumented rabbits with pacing-induced CHF after Ex. Sham and CHF rabbits were exercise trained for 4 wk at 15–18 m/min, 6 days/wk. Arterial pressure and HR were recorded before and after metoprolol (1 mg/kg iv) or after atropine (0.2 mg/kg iv). Mean arterial pressure was altered by infusions of sodium nitroprusside and phenylephrine. The data were fit to a sigmoid (logistic) function. Baseline HRs were 266.5 ± 8.4 and 232.1 ± 1.6 beats/min in CHF and CHF Ex rabbits, respectively ( P < 0.05). In the unblocked state, CHF rabbits had a significantly depressed peak baroreflex slope (1.7 ± 0.3 vs. 5.6 ± 0.7 beats · min−1 · mmHg−1; P < 0.001) and HR range (128.6 ± 34.5 vs. 253.2 ± 20.3 beats/min; P < 0.05) compared with normal subjects. Ex increased baroreflex slope to 4.9 ± 0.3 from 1.7 ± 0.3 beats · min−1 · mmHg−1 in unblocked rabbits ( P < 0.001 compared with CHF non-Ex). Ex did not alter baroreflex function in sham animals. After metoprolol, baroreflex slope was significantly increased in CHF Ex rabbits (1.5 ± 0.2 vs. 3.0 ± 0.2 beats · min−1 · mmHg−1; P < 0.05). After atropine, there was no significant change in baroreflex slope or HR range between CHF Ex and CHF rabbits. These data support the view that enhancement of baroreflex control of HR after Ex is due to an augmentation of vagal tone.

1990 ◽  
Vol 69 (3) ◽  
pp. 962-967 ◽  
Author(s):  
J. T. Sullebarger ◽  
C. S. Liang ◽  
P. D. Woolf ◽  
A. E. Willick ◽  
J. F. Richeson

Phenylephrine (PE) bolus and infusion methods have both been used to measure baroreflex sensitivity in humans. To determine whether the two methods produce the same values of baroreceptor sensitivity, we administered intravenous PE by both bolus injection and graded infusion methods to 17 normal subjects. Baroreflex sensitivity was determined from the slope of the linear relationship between the cardiac cycle length (R-R interval) and systolic arterial pressure. Both methods produced similar peak increases in arterial pressure and reproducible results of baroreflex sensitivity in the same subjects, but baroreflex slopes measured by the infusion method (9.9 +/- 0.7 ms/mmHg) were significantly lower than those measured by the bolus method (22.5 +/- 1.8 ms/mmHg, P less than 0.0001). Pretreatment with atropine abolished the heart rate response to PE given by both methods, whereas plasma catecholamines were affected by neither method of PE administration. Naloxone pretreatment exaggerated the pressor response to PE and increased plasma beta-endorphin response to PE infusion but had no effect on baroreflex sensitivity. Thus our results indicate that 1) activation of the baroreflex by the PE bolus and infusion methods, although reproducible, is not equivalent, 2) baroreflex-induced heart rate response to a gradual increase in pressure is less than that seen with a rapid rise, 3) in both methods, heart rate response is mediated by the vagus nerves, and 4) neither the sympathetic nervous system nor the endogenous opiate system has a significant role in mediating the baroreflex control of heart rate to a hypertensive stimulus in normal subjects.


2001 ◽  
Vol 280 (5) ◽  
pp. H2061-H2068 ◽  
Author(s):  
C. Michael Foley ◽  
Richard M. McAllister ◽  
Eileen M. Hasser

The effect of thyroid status on arterial baroreflex function and autonomic contributions to resting blood pressure and heart rate (HR) were evaluated in conscious rats. Rats were rendered hyperthyroid (Hyper) or hypothyroid (Hypo) with triiodothyronine and propylthiouracil treatments, respectively. Euthyroid (Eut), Hyper, and Hypo rats were chronically instrumented to measure mean arterial pressure (MAP), HR, and lumbar sympathetic nerve activity (LSNA). Baroreflex function was evaluated with the use of a logistic function that relates LSNA or HR to MAP during infusion of phenylephrine and sodium nitroprusside. Contributions of the autonomic nervous system to resting MAP and HR were assessed by blocking autonomic outflow with trimethaphan. In Hypo rats, the arterial baroreflex curve for both LSNA and HR was shifted downward. Hypo animals exhibited blunted sympathoexcitatory and tachycardic responses to decreases in MAP. Furthermore, the data suggest that in Hypo rats, the sympathetic influence on HR was predominant and the autonomic contribution to resting MAP was greater than in Eut rats. In Hyper rats, arterial baroreflex function generally was similar to that in Eut rats. The autonomic contribution to resting MAP was not different between Hyper and Eut rats, but predominant parasympathetic influence on HR was exhibited in Hyper rats. The results demonstrate baroreflex control of LSNA and HR is attenuated in Hypo but not Hyper rats. Thyroid status alters the balance of sympathetic to parasympathetic tone in the heart, and the Hypo state increases the autonomic contributions to resting blood pressure.


2006 ◽  
Vol 290 (4) ◽  
pp. R1003-R1011 ◽  
Author(s):  
Andrea G. Bechtold ◽  
Deborah A. Scheuer

Systemic corticosterone (Cort) modulates arterial baroreflex control of both heart rate and renal sympathetic nerve activity. Because baroreceptor afferents terminate in the dorsal hindbrain (DHB), an area with dense corticosteroid receptor expression, we tested the hypothesis that prolonged activation of DHB Cort receptors increases the midpoint and reduces the gain of arterial baroreflex control of heart rate in conscious rats. Small (3–4 mg) pellets of Cort (DHB Cort) or Silastic (DHB Sham) were placed on the surface of the DHB, or Cort was administered systemically by placing a Cort pellet on the surface of the dura (Dura Cort). Baroreflex control of heart rate was determined in conscious male Sprague Dawley rats on each of 4 days after initiation of treatment. Plots of arterial pressure vs. heart rate were analyzed using a four-parameter logistic function. After 3 days of treatment, the arterial pressure midpoint for baroreflex control of heart rate was increased in DHB Cort rats (123 ± 2 mmHg) relative to both DHB Sham (108 ± 3 mmHg) and Dura Cort rats (109 ± 2 mmHg, P < 0.05). On day 4, baseline arterial pressure was greater in DHB Cort (112 ± 2 mmHg) compared with DHB Sham (105 ± 2 mmHg) and Dura Cort animals (106 ± 2 mmHg, P < 0.05), and the arterial pressure midpoint was significantly greater than mean arterial pressure in the DHB Cort group only. Also on day 4, maximum baroreflex gain was reduced in DHB Cort (2.72 ± 0.12 beats·min−1·mmHg−1) relative to DHB Sham and Dura Cort rats (3.51 ± 0.28 and 3.37 ± 0.27 beats·min−1·mmHg−1, P < 0.05). We conclude that Cort acts in the DHB to increase the midpoint and reduce the gain of the heart rate baroreflex function.


2007 ◽  
Vol 85 (8) ◽  
pp. 811-817 ◽  
Author(s):  
Wei Qi ◽  
Francine G. Smith

The present study tested the hypothesis that κ-opioids modulate the arterial baroreflex control of heart rate in conscious young sheep. Various parameters governing the arterial baroreflex control of heart rate were assessed before and after activation of κ-opiate receptors (KOR) by i.v. administration of the specific KOR agonist U-50488H (experiment 1) or vehicle (experiment 2) to conscious, chronically instrumented lambs aged 42 ± 2 days (n = 6). The 2 experiments were administered in random order at minimum intervals of 48 h. Thirty min after U-50488H treatment, there was an increase in diastolic and mean arterial pressure and in heart rate, returning to control levels by 90 min. A significant increase in the arterial pressure at the midpoint of the baroreflex range and in the minimum heart rate as well as a significant decrease in the heart rate range over which the arterial baroreflex operates were also seen at 30 min after U-50488H, gradually returning to control levels over 120 min. Vehicle had no effect on any of the parameters governing the arterial baroreflex control of heart rate. These data provide the first direct evidence that under physiological conditions in young lambs, the arterial baroreflex control of heart rate is altered after administration of the specific KOR agonist U-50488H, revealing a previously unidentified role for this opioid receptor.


2015 ◽  
Vol 308 (9) ◽  
pp. H1096-H1102 ◽  
Author(s):  
Raphaela V. Groehs ◽  
Edgar Toschi-Dias ◽  
Ligia M. Antunes-Correa ◽  
Patrícia F. Trevizan ◽  
Maria Urbana P. B. Rondon ◽  
...  

Arterial baroreflex control of muscle sympathetic nerve activity (ABRMSNA) is impaired in chronic systolic heart failure (CHF). The purpose of the study was to test the hypothesis that exercise training would improve the gain and reduce the time delay of ABRMSNA in CHF patients. Twenty-six CHF patients, New York Heart Association Functional Class II-III, EF ≤ 40%, peak V̇o2 ≤ 20 ml·kg−1·min−1 were divided into two groups: untrained (UT, n = 13, 57 ± 3 years) and exercise trained (ET, n = 13, 49 ± 3 years). Muscle sympathetic nerve activity (MSNA) was directly recorded by microneurography technique. Arterial pressure was measured on a beat-to-beat basis. Time series of MSNA and systolic arterial pressure were analyzed by autoregressive spectral analysis. The gain and time delay of ABRMSNA was obtained by bivariate autoregressive analysis. Exercise training was performed on a cycle ergometer at moderate intensity, three 60-min sessions per week for 16 wk. Baseline MSNA, gain and time delay of ABRMSNA, and low frequency of MSNA (LFMSNA) to high-frequency ratio (HFMSNA) (LFMSNA/HFMSNA) were similar between groups. ET significantly decreased MSNA. MSNA was unchanged in the UT patients. The gain and time delay of ABRMSNA were unchanged in the ET patients. In contrast, the gain of ABRMSNA was significantly reduced [3.5 ± 0.7 vs. 1.8 ± 0.2, arbitrary units (au)/mmHg, P = 0.04] and the time delay of ABRMSNA was significantly increased (4.6 ± 0.8 vs. 7.9 ± 1.0 s, P = 0.05) in the UT patients. LFMSNA-to-HFMSNA ratio tended to be lower in the ET patients ( P < 0.08). Exercise training prevents the deterioration of ABRMSNA in CHF patients.


2008 ◽  
Vol 294 (3) ◽  
pp. H1304-H1309 ◽  
Author(s):  
Javier A. Sala-Mercado ◽  
Masashi Ichinose ◽  
Robert L. Hammond ◽  
Matthew Coutsos ◽  
Tomoko Ichinose ◽  
...  

Dynamic cardiac baroreflex responses are frequently investigated by analyzing the spontaneous reciprocal changes in arterial pressure and heart rate (HR). However, whether the spontaneous baroreflex-induced changes in HR translate into changes in cardiac output (CO) is unknown. In addition, this linkage between changes in HR and changes in CO may be different in subjects with heart failure (HF). We examined these questions using conscious dogs before and after pacing-induced HF. Spontaneous baroreflex sensitivity in the control of HR and CO was evaluated as the slopes of the linear relationships between HR or CO and left ventricular systolic pressure (LVSP) during spontaneous sequences of greater or equal to three consecutive beats when HR or CO changed inversely versus pressure. Furthermore, the translation of baroreflex HR responses into CO responses (HR-CO translation) was examined by computing the overlap between HR and CO sequences. In normal resting conditions, 44.0 ± 4.4% of HR sequences overlapped with CO sequences, suggesting that only around half of the baroreflex HR responses cause CO responses. In HF, HR-LVSP, CO-LVSP, and the HR-CO translation significantly decreased compared with the normal condition (−2.29 ± 0.5 vs. −5.78 ± 0.7 beats·min−1·mmHg−1; −70.95 ± 11.8 vs. −229.89 ± 29.6 ml·min−1·mmHg−1; and 19.66 ± 4.9 vs. 44.0 ± 4.4%, respectively). We conclude that spontaneous baroreflex HR responses do not always cause changes in CO. In addition, HF significantly decreases HR-LVSP, CO-LVSP, and HR-CO translation.


1996 ◽  
Vol 271 (1) ◽  
pp. R303-R309 ◽  
Author(s):  
H. Murakami ◽  
J. L. Liu ◽  
I. H. Zucker

Because the renin-angiotensin system is activated in heart failure, we hypothesized that angiotensin II (ANG II) plays a role in altering baroreflex sensitivity in the setting of heart failure. Accordingly, we evaluated the baroreflex control of heart rate (HR) in conscious, chronically instrumented rabbits in the normal state and after the establishment of heart failure. Heart failure was induced by rapid ventricular pacing at a rate of 360-380 beats/min for an average of 14.5 +/- 1.4 days. The data were compared with normal rabbits instrumented in a similar fashion. Baroreflex curves were generated by inflation of implanted hydraulic occluders on the vena cava and aortic arch or by administration of phenylephrine and sodium nitroprusside. Experiments were carried out before and after intravenous administration of the AT1 antagonist L-158,809. Rabbits with heart failure exhibited significantly lower arterial pressure (81 +/- 3 vs. 69 +/- 4 mmHg, P < 0.05), elevated resting HR (230 +/- 5 vs. 260 +/- 10 beats/min, P < 0.05), and elevated left atrial pressure (3.6 +/- 0.7 vs. 13.1 +/- 0.7 mmHg, P < 0.05). ANG II blockade had little effect on resting or baroreflex parameters in normal rabbits. However, in rabbits with heart failure, L-158,809 enhanced baroreflex sensitivity (2.7 +/- 0.5 vs. 4.7 +/- 0.8 beats.min-1.mmHg-1; P < 0.05), primarily by increasing the minimum HR evoked during baroreceptor activation. beta 1-Blockade had no effect on any baroreflex parameter after L-158,809 in rabbits with heart failure. However, L-158,809 significantly reduced the minimum HR after pretreatment with atropine in rabbits with heart failure. These data suggest that ANG II plays a role in modulation of cardiac sympathetic tone in this model of heart failure and may be responsible for the depressed baroreflex sensitivity observed in heart failure.


1997 ◽  
Vol 273 (3) ◽  
pp. R960-R966 ◽  
Author(s):  
V. L. Brooks ◽  
C. M. Kane ◽  
D. M. Van Winkle

Two studies were performed to determine whether the attenuation of baroreflex control of heart rate during late pregnancy in conscious rabbits is due to changes in parasympathetic (Para) or sympathetic (Sym) control of the heart. In the first, baroreflex relationships between arterial pressure and heart rate were generated before and after treatment with propranolol (Pro) to block Sym or with methscopolamine (Meth) to block Para. Each rabbit was studied in both the pregnant and nonpregnant state. Pregnancy decreased maximum baroreflex gain from 14.9 +/- 4.0 to 4.8 +/- 0.9 beats.min-1.mmHg-1 (P < 0.01) and decreased heart rate range from 177 +/- 6 to 143 +/- 10 beats/min (P < 0.01), primarily by increasing minimum heart rate (114 +/- 6 to 134 +/- 8 beats/min; P < 0.01). The difference between pregnant and nonpregnant rabbits in baroreflex gain was not altered by Meth but was abolished by Pro, suggesting that it is due to decreased Sym control of the heart. The elevated minimum heart rate of pregnancy persisted after Pro, but was abolished by Meth, suggesting that it is mediated by decreased Para control of the heart. In the second study, isolated buffer-perfused hearts from pregnant and nonpregnant rabbits were treated with increasing doses of isoproterenol (0.3-300 mM) or acetylcholine (0.3-10,000 microM), and the heart rate responses were determined. Hearts from pregnant rabbits were more sensitive to isoproterenol (P < 0.05), but less responsive to acetylcholine (P < 0.05). In conclusion, pregnancy-induced decreases in cardiac reflex gain and range appear to be mediated by alterations in Sym and Para, respectively. The change in Sym occurs proximal to the heart, whereas the decreased contribution of Para may be due, at least in part, to decreased sensitivity of the heart to acetylcholine.


1986 ◽  
Vol 251 (2) ◽  
pp. H253-H260
Author(s):  
J. L. Robinson

The effect of arginine vasopressin (AVP) and phenylephrine (PE) infusions on mean arterial pressure (MAP) and heart rate (HR) were compared in conscious dogs with all autonomic receptors intact (I), during muscarinic blockade (MB) and during ganglionic blockade (GB). After either MB or GB, the dose-MAP response curve for AVP and PE was shifted to the left of the I response curve; a greater shift was observed with AVP than with PE. The MAP threshold after GB for AVP and PE occurred at 10 and 50% of the threshold dose observed during the I response, respectively. Not only did the MAP threshold occur at a lower dose after MB and GB, but also the slope of the response curve was steeper than that of the I response. Comparing the amount of drug necessary to increase MAP 25 mmHg above control for PE and AVP before and after GB, the intact PE response required 4.3 +/- 1.0 (P less than 0.01) times more drug than during GB versus the intact AVP required 16.8 +/- 2.8 (P less than 0.01) times more drug than during GB. The baroreflex control of HR when all receptors were intact was 3.4 +/- 0.4 (P = 0.001) times more sensitive during AVP compared with PE; no differences were observed after MB. There were no significant changes in HR to AVP or PE after GB, thus indicating a lack of a direct effect of these agents on the HR. Our results show that MB and GB equally potentiate the pressor effects of AVP and PE, and the augmentation was much greater for AVP than for PE. The difference in the potentiation of these two vasoconstrictors is consistent with the finding that the baroreflex sensitivity during AVP was enhanced compared with PE. We have postulated that, in the resting conscious dog, AVP increases the sensitivity of the baroreflex primarily by producing a greater level of parasympathetic tone to the heart in response to a given pressure stimulus.


2012 ◽  
Vol 9 (1) ◽  
pp. 57-60 ◽  
Author(s):  
Gina G Mentzer ◽  
Alex J Auseon

Heart failure (HF) affects more than 5 million people and has an increasing incidence and cost burden. Patients note symptoms of dyspnea and fatigue that result in a decreased quality of life, which has not drastically improved over the past decades despite advances in therapies. The assessment of exercise capacity can provide information regarding patient diagnosis and prognosis, while doubling as a potential future therapy. clinically, there is acceptance that exercise is safe in hf and can have a positive impact on morbidity and quality of life, although evidence for improvement in mortality is still lacking. specific prescriptions for exercise training have not been developed because many variables and confounding factors have prevented research trials from demonstrating an ideal regimen. Physicians are becoming more aware of the indices and goals for hf patients in exercise testing and therapy to provide comprehensive cardiac care. it is further postulated that a combination of exercise training and pharmacologic therapy may eventually provide the most benefits to those suffering from hf.


Sign in / Sign up

Export Citation Format

Share Document