Role of myokines in exercise and metabolism

2007 ◽  
Vol 103 (3) ◽  
pp. 1093-1098 ◽  
Author(s):  
Bente Klarlund Pedersen ◽  
Thorbjörn C. A. Åkerström ◽  
Anders R. Nielsen ◽  
Christian P. Fischer

During the past 20 yr, it has been well documented that exercise has a profound effect on the immune system. With the discovery that exercise provokes an increase in a number of cytokines, a possible link between skeletal muscle contractile activity and immune changes was established. For most of the last century, researchers sought a link between muscle contraction and humoral changes in the form of an “exercise factor,” which could mediate some of the exercise-induced metabolic changes in other organs such as the liver and the adipose tissue. We suggest that cytokines and other peptides that are produced, expressed, and released by muscle fibers and exert either paracrine or endocrine effects should be classified as “myokines.” Since the discovery of interleukin (IL)-6 release from contracting skeletal muscle, evidence has accumulated that supports an effect of IL-6 on metabolism. We suggested that muscle-derived IL-6 fulfils the criteria of an exercise factor and that such classes of cytokines should be named “myokines.” Interestingly, recent research demonstrates that skeletal muscles can produce and express cytokines belonging to distinctly different families. Thus skeletal muscle has the capacity to express several myokines. To date the list includes IL-6, IL-8, and IL-15, and contractile activity plays a role in regulating the expression of these cytokines in skeletal muscle. The present review focuses on muscle-derived cytokines, their regulation by exercise, and their possible roles in metabolism and skeletal muscle function and it discusses which cytokines should be classified as true myokines.

2008 ◽  
Vol 88 (4) ◽  
pp. 1379-1406 ◽  
Author(s):  
Bente K. Pedersen ◽  
Mark A. Febbraio

Skeletal muscle has recently been identified as an endocrine organ. It has, therefore, been suggested that cytokines and other peptides that are produced, expressed, and released by muscle fibers and exert paracrine, autocrine, or endocrine effects should be classified as “myokines.” Recent research demonstrates that skeletal muscles can produce and express cytokines belonging to distinctly different families. However, the first identified and most studied myokine is the gp130 receptor cytokine interleukin-6 (IL-6). IL-6 was discovered as a myokine because of the observation that it increases up to 100-fold in the circulation during physical exercise. Identification of IL-6 production by skeletal muscle during physical activity generated renewed interest in the metabolic role of IL-6 because it created a paradox. On one hand, IL-6 is markedly produced and released in the postexercise period when insulin action is enhanced but, on the other hand, IL-6 has been associated with obesity and reduced insulin action. This review focuses on the myokine IL-6, its regulation by exercise, its signaling pathways in skeletal muscle, and its role in metabolism in both health and disease.


2011 ◽  
Vol 36 (5) ◽  
pp. 589-597 ◽  
Author(s):  
Brendon J. Gurd

Activation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)-mediated transcription is important for both the determination of mitochondrial content and the induction of mitochondrial biogenesis in skeletal muscle. SIRT1 (silent mating type information regulator 2 homolog 1) deactetylation is proposed as a potential activator of PGC-1α transcriptional activity. The current review examines the importance of SIRT1 deacetylation of PGC-1α in skeletal muscle. Models of SIRT1 overexpression and pharmacological activation are examined, but changes in SIRT1 expression and deacetylase activity following acute and chronic contractile activity will be emphasized. In addition, potential mechanisms of SIRT1 activation in skeletal muscle will be examined. The importance of the PGC-1α acetyltransferase GCN5 will also be briefly discussed. The current evidence supports the contribution of SIRT1 deacetylation of PGC-1α to exercise-induced mitochondrial biogenesis. Further research examining exercise-mediated activation of SIRT1 and the role of GCN5 in regulating PGC-1α transcriptional activity in skeletal muscle is required.


2009 ◽  
Vol 106 (6) ◽  
pp. 1826-1831 ◽  
Author(s):  
Emi Kawasaki ◽  
Fumi Hokari ◽  
Maiko Sasaki ◽  
Atsushi Sakai ◽  
Keiichi Koshinaka ◽  
...  

Exercise upregulates the expression of NR4A receptors, which are involved in regulation of glucose and fatty acid utilization genes in skeletal muscle. The aims of our study were 1) to determine the role of local contractile activity on NR4A mRNA expression in skeletal muscle during exercise; and 2) to elucidate the mechanisms underlying the induction of NR4A mRNA expression in response to muscle contractile activity. Rats were subjected to an acute 3-h low-intensity swimming or a 3-h low-intensity treadmill running as a model of endurance exercise. Low-intensity swimming increased NR4A1 and NR4A3 mRNA in triceps but not in soleus muscle. Conversely, low-intensity treadmill running increased NR4A1 and NR4A3 mRNA in soleus but not in triceps muscle. NR4A mRNA increased concomitantly with reduced postexercise muscle glycogen, suggesting that gene expression of NR4A receptors occurs in muscles recruited during exercise. Furthermore, in resting rats, an acute 1-h local electrical stimulation of a motor nerve to the tibialis anterior muscle caused increases in NR4A1 and NR4A3 mRNA relative to the contralateral control muscle of the same animals. On the other hand, after 6 h of hindlimb immobilization, NR4A1 and NR4A3 mRNA were reduced in immobilized soleus muscle relative to contralateral control muscle. In addition, both NR4A1 and NR4A3 mRNA in epitrochlearis muscle were increased after 6-h incubation with 0.5 mM 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside, which activates AMP-activated protein kinase. These results suggest that 1) local muscle contractile activity is required for increased expressions of NR4A1 and NR4A3 mRNA during exercise; and 2) muscle contractile activity-induced increases in NR4A1 and NR4A3 mRNA may be mediated by AMPK activation, at least in part.


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Sílvia Rocha Rodrigues

Nowadays, is well established that the benefits induced by exercise training (ET) affects not only skeletal muscle, but also other non-contractile organs over time. One potential mechanism underlying this crosstalk is the synthesis and secretion of several biological active factors, such as irisin, by muscle contractile activity. This hormone has been described to be able to induce a brown adipocyte-like phenotype in white adipose (WAT), increase whole-body metabolic rate, and therefore prevent and/or treat obesity-related metabolic diseases. Thus, the modulatory impact of ET on WAT may also occur through skeletal muscle - adipose organ axis. In this review, we summarize the acute and chronic adaptations to ET-induced irisin synthesis and secretion on the development of browning of white fat and, thus, providing an overview of the potential preventive and therapeutic role of ET on the obesity-related underlying pathways. 


1991 ◽  
Vol 261 (6) ◽  
pp. E795-E799 ◽  
Author(s):  
L. J. Goodyear ◽  
M. F. Hirshman ◽  
E. S. Horton

Skeletal muscle contractile activity results in increased rates of glucose transport that are associated with an increase in the number and activity of plasma membrane glucose transporters. In the current study it was determined whether exercise causes a translocation of glucose transporters from an intracellular pool to the plasma membrane and whether exercise and insulin stimulate the same glucose transporter protein. Plasma membrane glucose transporter number, measured by cytochalasin B binding, increased from 10.1 +/- 0.73 to 15.0 +/- 1.4 pmol/mg protein (P less than 0.01) in muscle of exercised rats, whereas microsomal membrane transporters decreased significantly from 6.0 +/- 0.7 to 4.2 +/- 0.4 pmol/mg protein (P less than 0.05). Western blot analysis using the monoclonal antibody mAb 1F8 (specific for GLUT-4) demonstrated a 45% increase in plasma membrane GLUT-4 from exercised skeletal muscle compared with controls, whereas microsomal membranes from the exercised muscle had a concomitant 25% decrease in GLUT-4 protein. These data suggest that exercise recruits transporters to the plasma membrane from an intracellular microsomal pool, similar to the translocation of transporters that occurs with insulin stimulation. Furthermore, both exercise and insulin stimulate the translocation of GLUT-4 in skeletal muscle, while GLUT-1 is not altered.


2019 ◽  
Vol 23 (2) ◽  
pp. 28-33 ◽  
Author(s):  
Seong Eun Kwak ◽  
Hyung Eun Shin ◽  
Di Di Zhang ◽  
Jihyun Lee ◽  
Kyung Jin Yoon ◽  
...  

2011 ◽  
Vol 110 (1) ◽  
pp. 264-274 ◽  
Author(s):  
Zhen Yan ◽  
Mitsuharu Okutsu ◽  
Yasir N. Akhtar ◽  
Vitor A. Lira

Skeletal muscle exhibits superb plasticity in response to changes in functional demands. Chronic increases of skeletal muscle contractile activity, such as endurance exercise, lead to a variety of physiological and biochemical adaptations in skeletal muscle, including mitochondrial biogenesis, angiogenesis, and fiber type transformation. These adaptive changes are the basis for the improvement of physical performance and other health benefits. This review focuses on recent findings in genetically engineered animal models designed to elucidate the mechanisms and functions of various signal transduction pathways and gene expression programs in exercise-induced skeletal muscle adaptations.


2021 ◽  
Vol 21 ◽  
Author(s):  
Vaishali K. ◽  
Nitesh Kumar ◽  
Vanishree Rao ◽  
Rakesh Krishna Kovela ◽  
Mukesh Kumar Sinha

: Skeletal muscles must generate and distribute energy properly in order to function perfectly. Mitochondria in skeletal muscle cells form vast networks to meet this need, and their functions may improve as a result of exercise. In the present review, we discussed exercise-induced mitochondrial adaptations, age-related mitochondrial decline, and a biomarker as a mitochondrial function indicator and exercise interference.


2020 ◽  
Vol 319 (1) ◽  
pp. H192-H202
Author(s):  
Alexander B. Hansen ◽  
Gilbert Moralez ◽  
Steven A. Romero ◽  
Christopher Gasho ◽  
Michael M. Tymko ◽  
...  

Sympathetic restraint of vascular conductance to inactive skeletal muscle is critical to maintain blood pressure during moderate- to high-intensity whole body exercise. This investigation shows that cycle exercise-induced restraint of inactive skeletal muscle vascular conductance occurs primarily because of activation of α-adrenergic receptors. Furthermore, exercise-induced vasoconstriction restrains the subsequent vasodilatory response to hand-grip exercise; however, the restraint of active skeletal muscle vasodilation was in part due to nonadrenergic mechanisms. We conclude that α-adrenergic receptors are the primary but not exclusive mechanism by which sympathetic vasoconstriction restrains blood flow in humans during whole body exercise and that metabolic activity modulates the contribution of α-adrenergic receptors.


Sign in / Sign up

Export Citation Format

Share Document