Malleability of human skeletal muscle Na+-K+-ATPase pump with short-term training

2004 ◽  
Vol 97 (1) ◽  
pp. 143-148 ◽  
Author(s):  
H. J. Green ◽  
D. J. Barr ◽  
J. R. Fowles ◽  
S. D. Sandiford ◽  
J. Ouyang

To investigate the hypothesis that short-term submaximal training would result in changes in Na+-K+-ATPase content, activity, and isoform distribution in skeletal muscle, seven healthy, untrained men [peak aerobic power (peak oxygen consumption; V̇o2 peak) = 45.6 ml·kg−1·min−1 (SE 5.4)] cycled for 2 h/day at 60–65% V̇o2 peak for 6 days. Muscle tissue, sampled from the vastus lateralis before training (0 days) and after 3 and 6 days of training and analyzed for Na+-K+-ATPase content, as assessed by the vanadate facilitated [3H]ouabain-binding technique, was increased ( P < 0.05) at 3 days (294 ± 8.6 pmol/g wet wt) and 6 days (308 ± 15 pmol/g wet wt) of training compared with 0 days (272 ± 9.7 pmol/g wet wt). Maximal Na+-K+-ATPase activity as evaluated by the 3- O-methylfluorescein phosphatase assay was increased ( P < 0.05) by 6 days (53.4 ± 5.9 nmol·h−1·mg protein−1) but not by 3 days (35.9 ± 4.5 nmol·h−1·mg protein−1) compared with 0 days (37.8 ± 3.7 nmol·h−1·mg protein−1) of training. Relative isoform distribution, measured by Western blot techniques, indicated increases ( P < 0.05) in α2-content by 3 days and β1-content by 6 days of training. These results indicate that prolonged aerobic exercise represents a potent stimulus for the rapid adaptation of Na+-K+-ATPase content, isoform, and activity characteristics.

1993 ◽  
Vol 264 (6) ◽  
pp. C1538-C1541 ◽  
Author(s):  
H. J. Green ◽  
E. R. Chin ◽  
M. Ball-Burnett ◽  
D. Ranney

To investigate the effect of short-term training on Na(+)-K(+)-adenosine triphosphatase (ATPase) concentration in skeletal muscle and on plasma K+ homeostasis during exercise, 9 subjects performed cycle exercise for 2 h per day for 6 consecutive days at 65% of maximal aerobic power (VO2 max). Na(+)-K(+)-ATPase concentration determined from biopsies obtained from the vastus lateralis muscle using the [3H]ouabain-binding technique increased 13.6% (P < 0.05) as a result of the training (339 +/- 16 vs. 385 +/- 19 pmol/g wet wt, means +/- SE). Increases in Na(+)-K(+)-ATPase concentration were accompanied by a small but significant increase in VO2 max (3.36 +/- 0.16 vs. 3.58 +/- 0.13 l/min). The increase in arterialized plasma K+ concentration and plasma K+ content determined during continuous exercise at three different intensities (60, 79, and 94% VO2 max) was depressed (P < 0.05) following training. These results indicate that not only is training capable of inducing an upregulation in sarcolemmal Na(+)-K(+)-ATPase concentration in humans, but provided that the exercise is of sufficient intensity and duration, the upregulation can occur within the first week of training. Moreover, our findings are consistent with the notion that the increase in Na(+)-K(+)-ATPase pump concentration attenuates the loss of K+ from the working muscle.


2019 ◽  
Vol 44 (12) ◽  
pp. 1391-1394
Author(s):  
Martin J. MacInnis ◽  
Lauren E. Skelly ◽  
F. Elizabeth Godkin ◽  
Brian J. Martin ◽  
Thomas R. Tripp ◽  
...  

The legs of 9 men (age 21 ± 2 years, 45 ± 4 mL/(kg·min)) were randomly assigned to complete 6 sessions of high-intensity exercise training, involving either one or four 5-min bouts of counterweighted, single-leg cycling. Needle biopsies from vastus lateralis revealed that citrate synthase maximal activity increased after training in the 4-bout group (p = 0.035) but not the 1-bout group (p = 0.10), with a significant difference between groups post-training (13%, p = 0.021). Novelty Short-term training using brief intense exercise requires multiple bouts per session to increase mitochondrial content in human skeletal muscle.


1995 ◽  
Vol 79 (6) ◽  
pp. 1936-1938 ◽  
Author(s):  
J. A. Houmard ◽  
M. S. Hickey ◽  
G. L. Tyndall ◽  
K. E. Gavigan ◽  
G. L. Dohm

Insulin-responsive glucose transporter (GLUT-4) content increases by 1.8-fold in skeletal muscle with 14 wk of exercise training [Houmard et al. Am. J. Physiol. 264 (Endocrinol. Metab. 27): E896-E901, 1993]. The purpose of this study was to determine whether more short-term training (7 days) increases GLUT-4 protein content in human skeletal muscle. Seven sedentary men [25.0 +/- 1.1 (SE) yr, 44.1 +/- 2.2 ml.kg-1.min-1 maximal O2 uptake, 14.9 +/- 2.1% body fat] were examined before and after 7 days of cycle ergometer training (1 h/day, 76 +/- 2% maximal heart rate). Needle biopsy samples from the vastus lateralis were used to determine GLUT-4 protein content. Muscle GLUT-4 increased (P < 0.05) by an average of 2.8 +/- 0.5-fold with 7 days of training. GLUT-4 content in skeletal muscle thus increases substantially with short-term exercise training.


2006 ◽  
Vol 101 (3) ◽  
pp. 934-937 ◽  
Author(s):  
Giorgos N. Kraniou ◽  
David Cameron-Smith ◽  
Mark Hargreaves

To examine the influence of exercise intensity on the increases in vastus lateralis GLUT4 mRNA and protein after exercise, six untrained men exercised for 60 min at 39 ± 3% peak oxygen consumption (V̇o2 peak) (Lo) or 27 ± 2 min at 83 ± 2% V̇o2 peak (Hi) in counterbalanced order. Preexercise muscle glycogen levels were not different between trials (Lo: 408 ± 35 mmol/kg dry mass; Hi: 420 ± 43 mmol/kg dry mass); however, postexercise levels were lower ( P < 0.05) in Hi (169 ± 18 mmol/kg dry mass) compared with Lo (262 ± 35 mmol/kg dry mass). Thus calculated muscle glycogen utilization was greater ( P < 0.05) in Hi (251 ± 24 mmol/kg) than in Lo (146 ± 34). Exercise resulted in similar increases in GLUT4 gene expression in both trials. GLUT4 mRNA was increased immediately at the end of exercise (∼2-fold; P < 0.05) and remained elevated after 3 h of postexercise recovery. When measured 3 h after exercise, total crude membrane GLUT4 protein levels were 106% higher in Lo (3.3 ± 0.7 vs. 1.6 ± 0.3 arbitrary units) and 61% higher in Hi (2.9 ± 0.5 vs. 1.8 ± 0.5 arbitrary units) relative to preexercise levels. A main effect for exercise was observed, with no significant differences between trials. In conclusion, exercise at ∼40 and ∼80% V̇o2 peak, with total work equal, increased GLUT4 mRNA and GLUT4 protein in human skeletal muscle to a similar extent, despite differences in exercise intensity and duration.


2005 ◽  
Vol 288 (1) ◽  
pp. E194-E199 ◽  
Author(s):  
Niels Jessen ◽  
Christian B. Djurhuus ◽  
Jens O. L. Jørgensen ◽  
Lasse S. Jensen ◽  
Niels Møller ◽  
...  

Prolonged growth hormone (GH) excess is known to be associated with insulin resistance, but the underlying mechanisms remain unknown. The aim of this study was to assess the impact of GH on insulin-stimulated glucose metabolism and insulin signaling in human skeletal muscle. In a cross-over design, eight healthy male subjects (age 26.0 ± 0.8 yr and body mass index 24.1 ± 0.5 kg/m2) were infused for 360 min with either GH (Norditropin, 45 ng·kg−1·min−1) or saline. During the final 180 min of the infusion, a hyperinsulinemic euglycemic clamp was performed (insulin infusion rate: 1.2 mU·kg−1·min−1). Muscle biopsies from vastus lateralis were taken before GH/saline administration and after 60 min of hyperinsulinemia. GLUT4 content and insulin signaling, as assessed by insulin receptor substrate (IRS)-1-associated phosphatidylinositol 3-kinase and Akt activity were determined. GH levels increased to a mean (±SE) level of 20.0 ± 2.3 vs. 0.5 ± 0.2 μg/l after saline infusion ( P < 0.01). During GH infusion, the glucose infusion rate during hyperinsulinemia was reduced by 38% ( P < 0.01). In both conditions, free fatty acids were markedly suppressed during hyperinsulinemia. Despite skeletal muscle insulin resistance, insulin still induced a similar ∼3-fold rise in IRS-1-associated PI 3-kinase activity (269 ± 105 and 311 ± 71% compared with baseline, GH vs. saline). GH infusion did not change Akt protein expression, and insulin caused an ∼13-fold increase in Akt activity (1,309 ± 327 and 1,287 ± 173%) after both GH and saline infusion. No difference in total GLUT4 content was noted (114.7 ± 7.4 and 107.6 ± 16.7 arbitrary units, GH vs. saline, compared with baseline). In conclusion, insulin resistance in skeletal muscle induced by short-term GH administration is not associated with detectable changes in the upstream insulin-signaling cascade or reduction in total GLUT4. Yet unknown mechanisms in insulin signaling downstream of Akt may be responsible.


2011 ◽  
Vol 301 (3) ◽  
pp. E456-E466 ◽  
Author(s):  
Boubacar Benziane ◽  
Ulrika Widegren ◽  
Sergej Pirkmajer ◽  
Jan Henriksson ◽  
Nigel K. Stepto ◽  
...  

Phospholemman (PLM, FXYD1) is a partner protein and regulator of the Na+-K+-ATPase (Na+-K+ pump). We explored the impact of acute and short-term training exercise on PLM physiology in human skeletal muscle. A group of moderately trained males ( n = 8) performed a 1-h acute bout of exercise by utilizing a one-legged cycling protocol. Muscle biopsies were taken from vastus lateralis at 0 and 63 min (non-exercised leg) and 30 and 60 min (exercised leg). In a group of sedentary males ( n = 9), we determined the effect of a 10-day intense aerobic cycle training on Na+-K+-ATPase subunit expression, PLM phosphorylation, and total PLM expression as well as PLM phosphorylation in response to acute exercise (1 h at ∼72% V̇o2peak). Biopsies were taken at rest, immediately following, and 3 h after an acute exercise bout before and at the conclusion of the 10-day training study. PLM phosphorylation was increased both at Ser63 and Ser68 immediately after acute exercise (75%, P < 0.05, and 30%, P < 0.05, respectively). Short-term training had no adaptive effect on PLM phosphorylation at Ser63 and Ser68, nor was the total amount of PLM altered posttraining. The protein expressions of α1-, α2-,and β1-subunits of Na+-K+-ATPase were increased after training (113%, P < 0.05, 49%, P < 0.05, and 27%, P < 0.05, respectively). Whereas an acute bout of exercise increased the phosphorylation of PKCα/βII on Thr638/641 pre- and posttraining, phosphorylation of PKCζ/λ on Thr403/410 was increased in response to acute exercise only after the 10-day training. In conclusion, we show that only acute exercise, and not short-term training, increases phosphorylation of PLM on Ser63 and Ser68, and data from one-legged cycling indicate that this effect of exercise on PLM phosphorylation is not due to systemic factors. Our results provide evidence that phosphorylation of PLM may play a role in the acute regulation of the Na+-K+-ATPase response to exercise.


2003 ◽  
Vol 13 (3) ◽  
pp. 294-302 ◽  
Author(s):  
Darren G. Burke ◽  
Philip D. Chilibeck ◽  
Gianni Parise ◽  
Mark A. Tarnopolsky ◽  
Darren G. Candow

α-lipoic acid has been found to enhance glucose uptake into skeletal muscle in animal models. Studies have also found that the co-ingestion of carbohydrate along with creatine increases muscle creatine uptake by a process related to insulin-stimulated glucose disposal. The purpose of this study was to determine the effect of α-lipoic acid on human skeletal muscle creatine uptake by directly measuring intramuscular concentrations of creatine, phosphocreatine, and ad-enosine triphosphate when creatine monohydrate was co-ingested with α-lipoic acid. Muscle biopsies were acquired from the vastus lateralis m. of 16 male subjects (18–32 y) before and after the experimental intervention. After the initial biopsy, subjects ingested 20 g · d−1 of creatine monohydrate, 20 g · d−1 of creatine monohydrate + 100 g · d−1 of sucrose, or 20 g · d−1 of creatine monohydrate + 100 g · d−1 of sucrose + 1000 mg · d−1 of α-lipoic acid for 5 days. Subjects refrained from exercise and consumed the same balanced diet for 7 days. Body weight increased by 2.1% following the nutritional intervention, with no differences between the groups. There was a significant increase in total creatine concentration following creatine supplementation, with the group ingesting α-lipoic acid showing a significantly greater increase (p < .05) in phosphocreatine (87.6 → 106.2 mmol · kg−1 dry mass [dm]) and total creatine (137.8 → 156.8 mmol · kg−1 dm). These findings indicate that co-ingestion of α-lipoic acid with creatine and a small amount of sucrose can enhance muscle total creatine content as compared to the ingestion of creatine and sucrose or creatine alone.


2007 ◽  
Vol 293 (2) ◽  
pp. E523-E530 ◽  
Author(s):  
H. J. Green ◽  
T. A. Duhamel ◽  
G. P. Holloway ◽  
J. W. Moule ◽  
J. Ouyang ◽  
...  

This study investigated the effects of a 16-h protocol of heavy intermittent exercise on the intrinsic activity and protein and isoform content of skeletal muscle Na+-K+-ATPase. The protocol consisted of 6 min of exercise performed once per hour at ∼91% peak aerobic power (V̇o2 peak) with tissue sampling from vastus lateralis before (B) and immediately after repetitions 1 (R1), 2 (R2), 9 (R9), and 16 (R16). Eleven untrained volunteers with a V̇o2 peak of 44.3 ± 2.3 ml·kg−1·min−1 participated in the study. Maximal Na+-K+-ATPase activity ( Vmax, in nmol·mg protein−1·h−1) as measured by the 3- O-methylfluorescein K+-stimulated phosphatase assay was reduced ( P < 0.05) by ∼15% with exercise regardless of the number of repetitions performed. In addition, Vmax at R9 and R16 was lower ( P < 0.05) than at R1 and R2. Vanadate-facilitated [3H]ouabain determination of Na+-K+-ATPase content (maximum binding capacity, pmol/g wet wt), although unaltered by exercise, increased ( P < 0.05) 8.3% by R9 with no further increase observed at R16. Assessment of relative changes in isoform abundance measured at B as determined by quantitative immunoblotting showed a 26% increase ( P < 0.05) in the α2-isoform by R2 and a 29% increase in α3 by R9. At R16, β3 was lower ( P < 0.05) than at R2 and R9. No changes were observed in α1, β1, or β2. It is concluded that repeated sessions of heavy exercise, although resulting in increases in the α2- and α3-isoforms and decreases in β3-isoform, also result in depression in maximal catalytic activity.


Sign in / Sign up

Export Citation Format

Share Document