Mechanisms contributing to knee extensor strength loss after prolonged running exercise

2003 ◽  
Vol 94 (1) ◽  
pp. 193-198 ◽  
Author(s):  
G. Y. Millet ◽  
V. Martin ◽  
G. Lattier ◽  
Y. Ballay

The aim of this study was to identify the mechanisms that contribute to the decline in knee extensor (KE) muscles strength after a prolonged running exercise. During the 2 days preceding a 30-km running race [duration 188.7 ± 27.0 (SD) min] and immediately after the race, maximal percutaneous electrical stimulations (single twitch, 0.5-s tetanus at 20 and 80 Hz) were applied to the femoral nerve of 12 trained runners. Superimposed twitches were also delivered during isometric maximal voluntary contraction (MVC) to determine the level of voluntary activation (%VA). The vastus lateralis electromyogram was recorded. KE MVC decreased from pre- to postexercise (from 188.1 ± 25.2 to 142.7 ± 29.7 N · m; P < 0.001) as did %VA (from 98.8 ± 1.8 to 91.3 ± 10.7%; P < 0.05). The changes from pre- to postexercise in these two variables were highly correlated ( R = 0.88; P < 0.001). The modifications in the mechanical response after the 80-Hz stimulation and M-wave peak-to-peak amplitude were also significant ( P < 0.001 and P < 0.05, respectively). It can be concluded that 1) central fatigue, neuromuscular propagation, and muscular factors are involved in the 23.5 ± 14.9% reduction in MVC after a prolonged running bout at racing pace and 2) runners with the greatest KE strength loss experience large activation deficit.

2003 ◽  
Vol 28 (3) ◽  
pp. 434-445 ◽  
Author(s):  
Guillaume Y. Millet ◽  
Vincent Martin ◽  
Nicola A. Maffiuletti ◽  
Alain Martin

The aim of this study was to characterize neuromuscular fatigue in knee extensor muscles after a marathon skiing race (mean ± SD duration = 159.7 ± 17.9 min). During the 2 days preceding the event and immediately after, maximal percutaneous electrical stimulations (single twitch, 0.5-s tetanus at 20 and 80 Hz) were applied to the femoral nerve of 11 trained skiers. Superimposed twitches were also delivered during maximal voluntary contraction (MVC) to determine maximal voluntary activation (%VA). EMG was recorded from the vastus lateralis muscle. MVC decreased with fatigue from 171.7 ± 33.7 to 157.3 ± 35.2 Nm (-8.4%; p < 0.005) while %VA did not change significantly. The RMS measured during MVC and peak-to-peak amplitude of the compound muscle action potential (PPA) from the vastus lateralis decreased with fatigue by about 30% (p < 0.01), but RMS•PPA−1was similar before and after the ski marathon. Peak tetanus tension at 20 Hz and 80 Hz (P020 and P080, respectively) did not change significantly, but P020•P080−1 increased (p < 0.05) after the ski marathon. Data from electrically evoked single twitches showed greater peak mechanical response, faster rate of force development, and shorter contraction time in the fatigued state. From these results it can be concluded that a ski skating marathon (a) alters slightly but significantly maximal voluntary strength of the knee extensors without affecting central activation, and (b) induces both potentiation and fatigue. Key words: low- and high-frequency electrical stimulation, central activation, potentiation


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242324
Author(s):  
Jonathan Harnie ◽  
Thomas Cattagni ◽  
Christophe Cornu ◽  
Peter McNair ◽  
Marc Jubeau

The aim of the current study was to investigate the effect of a single session of prolonged tendon vibration combined with low submaximal isometric contraction on maximal motor performance. Thirty-two young sedentary adults were assigned into two groups that differed based on the knee angle tested: 90° or 150° (180° = full knee extension). Participants performed two fatigue-inducing exercise protocols: one with three 10 min submaximal (10% of maximal voluntary contraction) knee extensor contractions and patellar tendon vibration (80 Hz) another with submaximal knee extensor contractions only. Before and after each fatigue protocol, maximal voluntary isometric contractions (MVC), voluntary activation level (assessed by the twitch interpolation technique), peak-to-peak amplitude of maximum compound action potentials of vastus medialis and vastus lateralis (assessed by electromyography with the use of electrical nerve stimulation), peak twitch amplitude and peak doublet force were measured. The knee extensor fatigue was significantly (P<0.05) greater in the 90° knee angle group (-20.6% MVC force, P<0.05) than the 150° knee angle group (-8.3% MVC force, P = 0.062). Both peripheral and central alterations could explain the reduction in MVC force at 90° knee angle. However, tendon vibration added to isometric contraction did not exacerbate the reduction in MVC force. These results clearly demonstrate that acute infrapatellar tendon vibration using a commercial apparatus operating at optimal conditions (i.e. contracted and stretched muscle) does not appear to induce knee extensor neuromuscular fatigue in young sedentary subjects.


2004 ◽  
Vol 97 (5) ◽  
pp. 1923-1929 ◽  
Author(s):  
V. Martin ◽  
G. Y. Millet ◽  
A. Martin ◽  
G. Deley ◽  
G. Lattier

The aim of this study was to compare the use of transcutaneous vs. motor nerve stimulation in the evaluation of low-frequency fatigue. Nine female and eleven male subjects, all physically active, performed a 30-min downhill run on a motorized treadmill. Knee extensor muscle contractile characteristics were measured before, immediately after (Post), and 30 min after the fatiguing exercise (Post30) by using single twitches and 0.5-s tetani at 20 Hz (P20) and 80 Hz (P80). The P20-to-P80 ratio was calculated. Electrical stimulations were randomly applied either maximally to the femoral nerve or via large surface electrodes (ES) at an intensity sufficient to evoke 50% of maximal voluntary contraction (MVC) during a 80-Hz tetanus. Voluntary activation level was also determined during isometric MVC by the twitch-interpolation technique. Knee extensor MVC and voluntary activation level decreased at all points in time postexercise ( P < 0.001). P20 and P80 displayed significant time × gender × stimulation method interactions ( P < 0.05 and P < 0.001, respectively). Both stimulation methods detected significant torque reductions at Post and Post30. Overall, ES tended to detect a greater impairment at Post in male and a lesser one in female subjects at both Post and Post30. Interestingly, the P20-P80 ratio relative decrease did not differ between the two methods of stimulation. The low-to-high frequency ratio only demonstrated a significant time effect ( P < 0.001). It can be concluded that low-frequency fatigue due to eccentric exercise appears to be accurately assessable by ES.


2001 ◽  
Vol 91 (3) ◽  
pp. 1055-1060 ◽  
Author(s):  
Lars Nybo ◽  
Bodil Nielsen

The present study investigated the effects of hyperthermia on the contributions of central and peripheral factors to the development of neuromuscular fatigue. Fourteen men exercised at 60% maximal oxygen consumption on a cycle ergometer in hot (40°C; hyperthermia) and thermoneutral (18°C; control) environments. In hyperthermia, the core temperature increased throughout the exercise period and reached a peak value of 40.0 ± 0.1°C (mean ± SE) at exhaustion after 50 ± 3 min of exercise. In control, core temperature stabilized at ∼38.0 ± 0.1°C, and exercise was maintained for 1 h without exhausting the subjects. Immediately after the cycle trials, subjects performed 2 min of sustained maximal voluntary contraction (MVC) either with the exercised legs (knee extension) or with a “nonexercised” muscle group (handgrip). The degree of voluntary activation during sustained maximal knee extensions was assessed by superimposing electrical stimulation (EL) to nervus femoralis. Voluntary knee extensor force was similar during the first 5 s of contraction in hyperthermia and control. Thereafter, force declined in both trials, but the reduction in maximal voluntary force was more pronounced in the hyperthermic trial, and, from 30 to 120 s, the force was significantly lower in hyperthermia compared with control. Calculation of the voluntary activation percentage (MVC/MVC + EL) revealed that the degree of central activation was significantly lower in hyperthermia (54 ± 7%) compared with control (82 ± 6%). In contrast, total force of the knee extensors (MVC + force from EL) was not different in the two trials. Force development during handgrip contraction followed the same pattern of response as was observed for the knee extensors. In conclusion, these data demonstrate that the ability to generate force during a prolonged MVC is attenuated with hyperthermia, and the impaired performance is associated with a reduction in the voluntary activation percentage.


2015 ◽  
Vol 118 (4) ◽  
pp. 408-418 ◽  
Author(s):  
David S. Kennedy ◽  
Siobhan C. Fitzpatrick ◽  
Simon C. Gandevia ◽  
Janet L. Taylor

During fatiguing upper limb exercise, maintained firing of group III/IV muscle afferents can limit voluntary drive to muscles within the same limb. It is not known if this effect occurs in the lower limb. We investigated the effects of group III/IV muscle afferent firing from fatigued ipsilateral and contralateral extensor muscles and ipsilateral flexor muscles of the knee on voluntary activation of the knee extensors. In three experiments, we examined voluntary activation of the knee extensors by measuring changes in superimposed twitches evoked by femoral nerve stimulation. Subjects attended on 2 days for each experiment. On one day a sphygmomanometer cuff occluded blood flow of the fatigued muscles to maintain firing of group III/IV muscle afferents. After a 2-min extensor contraction ( experiment 1; n = 9), mean voluntary activation was lower with than without maintained ischemia (47 ± 19% vs. 87 ± 8%, respectively; P < 0.001). After a 2-min knee flexor maximal voluntary contraction (MVC) ( experiment 2; n = 8), mean voluntary activation was also lower with than without ischemia (59 ± 21% vs. 79 ± 9%; P < 0.01). After the contralateral (left) MVC ( experiment 3; n = 8), mean voluntary activation of the right leg was similar with or without ischemia (92 ± 6% vs. 93 ± 4%; P = 0.65). After fatiguing exercise, activity in group III/IV muscle afferents reduces voluntary activation of the fatigued muscle and nonfatigued antagonist muscles in the same leg. However, group III/IV muscle afferents from the fatigued left leg had no effect on the unfatigued right leg. This suggests that any “crossover” of central fatigue in the lower limbs is not mediated by group III/IV muscle afferents.


2006 ◽  
Vol 100 (6) ◽  
pp. 1757-1764 ◽  
Author(s):  
J. M. Kalmar ◽  
E. Cafarelli

After fatigue, motor evoked potentials (MEP) elicited by transcranial magnetic stimulation and cervicomedullary evoked potentials elicited by stimulation of the corticospinal tract are depressed. These reductions in corticomotor excitability and corticospinal transmission are accompanied by voluntary activation failure, but this may not reflect a causal relationship. Our purpose was to determine whether a decline in central excitability contributes to central fatigue. We hypothesized that, if central excitability limits voluntary activation, then a caffeine-induced increase in central excitability should offset voluntary activation failure. In this repeated-measures study, eight men each attended two sessions. Baseline measures of knee extension torque, maximal voluntary activation, peripheral transmission, contractile properties, and central excitability were made before administration of caffeine (6 mg/kg) or placebo. The amplitude of vastus lateralis MEPs elicited during minimal muscle activation provided a measure of central excitability. After a 1-h rest, baseline measures were repeated before, during, and after a fatigue protocol that ended when maximal voluntary torque declined by 35% (Tlim). Increased prefatigue MEP amplitude ( P = 0.055) and cortically evoked twitch ( P < 0.05) in the caffeine trial indicate that the drug increased central excitability. In the caffeine trial, increased MEP amplitude was correlated with time to task failure ( r = 0.74, P < 0.05). Caffeine potentiated the MEP early in the fatigue protocol ( P < 0.05) and offset the 40% decline in placebo MEP ( P < 0.05) at Tlim. However, this was not associated with enhanced maximal voluntary activation during fatigue or recovery, demonstrating that voluntary activation is not limited by central excitability.


2004 ◽  
Vol 97 (5) ◽  
pp. 1693-1701 ◽  
Author(s):  
C. J. de Ruiter ◽  
R. D. Kooistra ◽  
M. I. Paalman ◽  
A. de Haan

We investigated the capacity for torque development and muscle activation at the onset of fast voluntary isometric knee extensions at 30, 60, and 90° knee angle. Experiments were performed in subjects ( n = 7) who had high levels (>90%) of activation at the plateau of maximal voluntary contractions. During maximal electrical nerve stimulation (8 pulses at 300 Hz), the maximal rate of torque development (MRTD) and torque time integral over the first 40 ms (TTI40) changed in proportion with torque at the different knee angles (highest values at 60°). At each knee angle, voluntary MRTD and stimulated MRTD were similar ( P < 0.05), but time to voluntary MRTD was significantly longer. Voluntary TTI40 was independent ( P > 0.05) of knee angle and on average (all subjects and angles) only 40% of stimulated TTI40. However, among subjects, the averaged (across knee angles) values ranged from 10.3 ± 3.1 to 83.3 ± 3.2% and were positively related ( r2 = 0.75, P < 0.05) to the knee-extensor surface EMG at the start of torque development. It was concluded that, although all subjects had high levels of voluntary activation at the plateau of maximal voluntary contraction, among subjects and independent of knee angle, the capacity for fast muscle activation varied substantially. Moreover, in all subjects, torque developed considerably faster during maximal electrical stimulation than during maximal voluntary effort. At different knee angles, stimulated MRTD and TTI40 changed in proportion with stimulated torque, but voluntary MRTD and TTI40 changed less than maximal voluntary torque.


2003 ◽  
Vol 95 (4) ◽  
pp. 1515-1522 ◽  
Author(s):  
L Rochette ◽  
S. K. Hunter ◽  
N Place ◽  
R Lepers

Ten young men sustained an isometric contraction of the knee extensor muscles at 20% of the maximum voluntary contraction (MVC) torque on three separate occasions in a seated posture. Subjects performed an isometric knee extension contraction on a fourth occasion in a supine posture. The time to task failure for the seated posture was similar across sessions (291 ± 84 s; P > 0.05), and the MVC torque was similarly reduced across sessions after the fatiguing contraction (42 ± 12%). The rate of increase in electromyograph (EMG) activity (%MVC) and torque fluctuations during the fatiguing contractions were similar across sessions. However, the rate of increase in EMG differed among the knee extensor muscles: the rectus femoris began at a greater amplitude (31.5 ± 11.0%) compared with the vastus lateralis and vastus medialis muscles (18.8 ± 5.3%), but it ended at a similar value (45.4 ± 3.1%). The time to task failure and increase in EMG activity were similar for the seated and supine tasks; however, the reduction in MVC torque was greater for the seated posture. These findings indicate that the time to task failure for the knee extensor muscles that have a common tendon insertion did not alter over repeat sessions as had been observed for the elbow flexor muscles (Hunter SK and Enoka RM. J Appl Physiol 94: 108-118, 2003).


2018 ◽  
Vol 125 (4) ◽  
pp. 1246-1256 ◽  
Author(s):  
Enzo Piponnier ◽  
Vincent Martin ◽  
Bastien Bontemps ◽  
Emeric Chalchat ◽  
Valérie Julian ◽  
...  

The aim of the present study was to compare the development and etiology of neuromuscular fatigue of the knee extensor (KE) and plantar flexor (PF) muscles during repeated maximal voluntary isometric contractions (MVICs) between children and adults. Prepubertal boys ( n = 21; 9–11 yr) and men ( n = 24; 18–30 yr) performed two fatigue protocols consisting of a repetition of 5-s isometric MVIC of the KE or PF muscles interspersed with 5-s passive recovery periods until MVIC reached 60% of its initial value. The etiology of neuromuscular fatigue of the KE and PF muscles was investigated by means of noninvasive methods, such as the surface electromyography, single and doublet magnetic stimulation, twitch interpolation technique, and near-infrared spectroscopy. The number of repetitions performed was significantly lower in men (15.4 ± 3.8) than boys (38.7 ± 18.8) for the KE fatigue test. In contrast, no significant difference was found for the PF muscles between boys and men (12.1 ± 4.9 and 13.8 ± 4.9 repetitions, respectively). Boys displayed a lower reduction in potentiated twitch torque, low-frequency fatigue, and muscle oxygenation than men whatever the muscle group considered. In contrast, voluntary activation level and normalized electromyography data decreased to a greater extent in boys than men for both muscle groups. To conclude, boys experienced less peripheral and more central fatigue during repeated MVICs than men whatever the muscle group considered. However, child-adult differences in neuromuscular fatigue were muscle-dependent since boys fatigued similarly to men with the PF muscles and to a lower extent with the KE muscles. NEW & NOTEWORTHY Child-adult differences in neuromuscular fatigue during repeated maximal voluntary contractions are specific to the muscle group since children fatigue similarly to adults with the plantar flexor muscles and to a lower extent with the knee extensor muscles. Children experience less peripheral fatigue and more central fatigue than adults, regardless of the muscle group considered.


2002 ◽  
Vol 93 (2) ◽  
pp. 675-684 ◽  
Author(s):  
Motoki Kouzaki ◽  
Minoru Shinohara ◽  
Kei Masani ◽  
Hiroaki Kanehisa ◽  
Tetsuo Fukunaga

To determine quantitatively the features of alternate muscle activity between knee extensor synergists during low-level prolonged contraction, a surface electromyogram (EMG) was recorded from the rectus femoris (RF), vastus lateralis (VL), and vastus medialis (VM) in 11 subjects during isometric knee extension exercise at 2.5% of maximal voluntary contraction (MVC) for 60 min ( experiment 1). Furthermore, to examine the relation between alternate muscle activity and contraction levels, six of the subjects also performed sustained knee extension at 5.0, 7.5, and 10.0% of MVC ( experiment 2). Alternate muscle activity among the three muscles was assessed by quantitative analysis on the basis of the rate of integrated EMG sequences. In experiment 1, the number of alternations was significantly higher between RF and either VL or VM than between VL and VM. Moreover, the frequency of alternate muscle activity increased with time. In experiment 2, alternating muscle activity was found during contractions at 2.5 and 5.0% of MVC, although not at 7.5 and 10.0% of MVC, and the number of alternations was higher at 2.5 than at 5.0% of MVC. Thus the findings of the present study demonstrated that alternate muscle activity in the quadriceps muscle 1) appears only between biarticular RF muscle and monoarticular vasti muscles (VL and VM), and its frequency of alternations progressively increases with time, and 2) emerges under sustained contraction with force production levels ≤5.0% of MVC.


Sign in / Sign up

Export Citation Format

Share Document