Decreased steady-state cerebral blood flow velocity and altered dynamic cerebral autoregulation during 5-h sustained 15% O2 hypoxia

2010 ◽  
Vol 108 (5) ◽  
pp. 1154-1161 ◽  
Author(s):  
Naoko Nishimura ◽  
Ken-ichi Iwasaki ◽  
Yojiro Ogawa ◽  
Ken Aoki

Effects of hypoxia on cerebral circulation are important for occupational, high-altitude, and aviation medicine. Increased risk of fainting might be attributable to altered cerebral circulation by hypoxia. Dynamic cerebral autoregulation is reportedly impaired immediately by mild hypoxia. However, continuous exposure to hypoxia causes hyperventilation, resulting in hypocapnia. This hypocapnia is hypothesized to restore impaired dynamic cerebral autoregulation with reduced steady-state cerebral blood flow (CBF). However, no studies have examined hourly changes in alterations of dynamic cerebral autoregulation and steady-state CBF during sustained hypoxia. We therefore examined cerebral circulation during 5-h exposure to 15% O2 hypoxia and 21% O2 in 13 healthy volunteers in a sitting position. Waveforms of blood pressure and CBF velocity in the middle cerebral artery were measured using finger plethysmography and transcranial Doppler ultrasonography. Dynamic cerebral autoregulation was assessed by spectral and transfer function analysis. As expected, steady-state CBF velocity decreased significantly from 2 to 5 h of hypoxia, accompanying 2- to 3-Torr decreases in end-tidal CO2 (ETCO2). Furthermore, transfer function gain and coherence in the very-low-frequency range increased significantly at the beginning of hypoxia, indicating impaired dynamic cerebral autoregulation. However, contrary to the proposed hypothesis, indexes of dynamic cerebral autoregulation showed no significant restoration despite ETCO2 reductions, resulting in persistent higher values of very-low-frequency power of CBF velocity variability during hypoxia (214 ± 40% at 5 h of hypoxia vs. control) without significant increases in blood pressure variability. These results suggest that sustained mild hypoxia reduces steady-state CBF and continuously impairs dynamic cerebral autoregulation, implying an increased risk of shortage of oxygen supply to the brain.

2009 ◽  
Vol 296 (5) ◽  
pp. R1598-R1605 ◽  
Author(s):  
David A. Low ◽  
Jonathan E. Wingo ◽  
David M. Keller ◽  
Scott L. Davis ◽  
Jian Cui ◽  
...  

This study tested the hypothesis that passive heating impairs cerebral autoregulation. Transfer function analyses of resting arterial blood pressure and middle cerebral artery blood velocity (MCA Vmean), as well as MCA Vmean and blood pressure responses to rapid deflation of previously inflated thigh cuffs, were examined in nine healthy subjects under normothermic and passive heat stress (increase core temperature 1.1 ± 0.2°C, P < 0.001) conditions. Passive heating reduced MCA Vmean [change (Δ) of 8 ± 8 cm/s, P = 0.01], while blood pressure was maintained (Δ −1 ± 4 mmHg, P = 0.36). Coherence was decreased in the very-low-frequency range during heat stress (0.57 ± 0.13 to 0.26 ± 0.10, P = 0.001), but was >0.5 and similar between normothermia and heat stress in the low- (0.07–0.20 Hz, P = 0.40) and high-frequency (0.20–0.35 Hz, P = 0.12) ranges. Transfer gain was reduced during heat stress in the very-low-frequency (0.88 ± 0.38 to 0.59 ± 0.19 cm·s−1·mmHg−1, P = 0.02) range, but was unaffected in the low- and high-frequency ranges. The magnitude of the decrease in blood pressure (normothermia: 20 ± 4 mmHg, heat stress: 19 ± 6 mmHg, P = 0.88) and MCA Vmean (13 ± 4 to 12 ± 6 cm/s, P = 0.59) in response to cuff deflation was not affected by the thermal condition. Similarly, the rate of regulation of cerebrovascular conductance (CBVC) after cuff release (0.44 ± 0.22 to 0.38 ± 0.13 ΔCBVC units/s, P = 0.16) and the time for MCA Vmean to recover to precuff deflation baseline (10.0 ± 7.9 to 8.7 ± 4.9 s, P = 0.77) were not affected by heat stress. Counter to the proposed hypothesis, similar rate of regulation responses suggests that heat stress does not impair the ability to control cerebral perfusion after a rapid reduction in perfusion pressure, while reduced transfer function gain and coherence in the very-low-frequency range during heat stress suggest that dynamic cerebral autoregulation is improved during spontaneous oscillations in blood pressure within this frequency range.


2012 ◽  
Vol 112 (2) ◽  
pp. 266-271 ◽  
Author(s):  
Ken-ichi Iwasaki ◽  
Yojiro Ogawa ◽  
Ken Aoki ◽  
Ryo Yanagida

We examined changes in cerebral circulation in 15 healthy men during exposure to mild +Gz hypergravity (1.5 Gz, head-to-foot) using a short-arm centrifuge. Continuous arterial pressure waveform (tonometry), cerebral blood flow (CBF) velocity in the middle cerebral artery (transcranial Doppler ultrasonography), and partial pressure of end-tidal carbon dioxide (ETco2) were measured in the sitting position (1 Gz) and during 21 min of exposure to mild hypergravity (1.5 Gz). Dynamic cerebral autoregulation was assessed by spectral and transfer function analysis between beat-to-beat mean arterial pressure (MAP) and mean CBF velocity (MCBFV). Steady-state MAP did not change, but MCBFV was significantly reduced with 1.5 Gz (−7%). ETco2 was also reduced (−12%). Variability of MAP increased significantly with 1.5 Gz in low (53%)- and high-frequency ranges (88%), but variability of MCBFV did not change in these frequency ranges, resulting in significant decreases in transfer function gain between MAP and MCBFV (gain in low-frequency range, −17%; gain in high-frequency range, −13%). In contrast, all of these indexes in the very low-frequency range were unchanged. Transfer from arterial pressure oscillations to CBF fluctuations was thus suppressed in low- and high-frequency ranges. These results suggest that steady-state global CBF was reduced, but dynamic cerebral autoregulation in low- and high-frequency ranges was improved with stabilization of CBF fluctuations despite increases in arterial pressure oscillations during mild +Gz hypergravity. We speculate that this improvement in dynamic cerebral autoregulation within these frequency ranges may have been due to compensatory effects against the reduction in steady-state global CBF.


2009 ◽  
Vol 107 (6) ◽  
pp. 1722-1729 ◽  
Author(s):  
R. Matthew Brothers ◽  
Rong Zhang ◽  
Jonathan E. Wingo ◽  
Kimberly A. Hubing ◽  
Craig G. Crandall

Impaired cerebral autoregulation during marked reductions in arterial blood pressure may contribute to heat stress-induced orthostatic intolerance. This study tested the hypothesis that passive heat stress attenuates dynamic cerebral autoregulation during pronounced swings in arterial blood pressure. Mean arterial blood pressure (MAP) and middle cerebral artery blood velocity were continuously recorded for ∼6 min during normothermia and heat stress (core body temperature = 36.9 ± 0.1°C and 38.0 ± 0.1°C, respectively, P < 0.001) in nine healthy individuals. Swings in MAP were induced by 70-mmHg oscillatory lower body negative pressure (OLBNP) during normothermia and at a sufficient lower body negative pressure to cause similar swings in MAP during heat stress. OLBNP was applied at a very low frequency (∼0.03 Hz, i.e., 15 s on-15 s off) and a low frequency (∼0.1 Hz, i.e., 5 s on-5 s off). For each thermal condition, transfer gain, phase, and coherence function were calculated at both frequencies of OLBNP. During very low-frequency OLBNP, transfer function gain was reduced by heat stress (0.55 ± 0.20 and 0.31 ± 0.07 cm·s−1·mmHg−1 during normothermia and heat stress, respectively, P = 0.02), which is reflective of improved cerebrovascular autoregulation. During low-frequency OLBNP, transfer function gain was similar between thermal conditions (1.19 ± 0.53 and 1.01 ± 0.20 cm·s−1·mmHg−1 during normothermia and heat stress, respectively, P = 0.32). Estimates of phase and coherence were similar between thermal conditions at both frequencies of OLBNP. Contrary to our hypothesis, dynamic cerebral autoregulation during large swings in arterial blood pressure during very low-frequency (i.e., 0.03 Hz) OLBNP is improved during heat stress, but it is unchanged during low-frequency (i.e., 0.1 Hz) OLBNP.


2008 ◽  
Vol 104 (2) ◽  
pp. 490-498 ◽  
Author(s):  
Philip N. Ainslie ◽  
Shigehiko Ogoh ◽  
Katie Burgess ◽  
Leo Celi ◽  
Ken McGrattan ◽  
...  

We hypothesized that 1) acute severe hypoxia, but not hyperoxia, at sea level would impair dynamic cerebral autoregulation (CA); 2) impairment in CA at high altitude (HA) would be partly restored with hyperoxia; and 3) hyperoxia at HA and would have more influence on blood pressure (BP) and less influence on middle cerebral artery blood flow velocity (MCAv). In healthy volunteers, BP and MCAv were measured continuously during normoxia and in acute hypoxia (inspired O2 fraction = 0.12 and 0.10, respectively; n = 10) or hyperoxia (inspired O2 fraction, 1.0; n = 12). Dynamic CA was assessed using transfer-function gain, phase, and coherence between mean BP and MCAv. Arterial blood gases were also obtained. In matched volunteers, the same variables were measured during air breathing and hyperoxia at low altitude (LA; 1,400 m) and after 1–2 days after arrival at HA (∼5,400 m, n = 10). In acute hypoxia and hyperoxia, BP was unchanged whereas it was decreased during hyperoxia at HA (−11 ± 4%; P < 0.05 vs. LA). MCAv was unchanged during acute hypoxia and at HA; however, acute hyperoxia caused MCAv to fall to a greater extent than at HA (−12 ± 3 vs. −5 ± 4%, respectively; P < 0.05). Whereas CA was unchanged in hyperoxia, gain in the low-frequency range was reduced during acute hypoxia, indicating improvement in CA. In contrast, HA was associated with elevations in transfer-function gain in the very low- and low-frequency range, indicating CA impairment; hyperoxia lowered these elevations by ∼50% ( P < 0.05). Findings indicate that hyperoxia at HA can partially improve CA and lower BP, with little effect on MCAv.


2008 ◽  
Vol 109 (4) ◽  
pp. 642-650 ◽  
Author(s):  
Yojiro Ogawa ◽  
Ken-ichi Iwasaki ◽  
Ken Aoki ◽  
Wakako Kojima ◽  
Jitsu Kato ◽  
...  

Background Dexmedetomidine, which is often used in intensive care units in patients with compromised circulation, might induce further severe decreases in cerebral blood flow (CBF) with temporal decreases in arterial pressure induced by various stimuli if dynamic cerebral autoregulation is not improved. Therefore, the authors hypothesized that dexmedetomidine strengthens dynamic cerebral autoregulation. Methods Fourteen healthy male subjects received placebo, low-dose dexmedetomidine (loading, 3 microg x kg(-1) x h(-1) for 10 min; maintenance, 0.2 microg x kg(-1) x h(-1) for 60 min), and high-dose dexmedetomidine (loading, 6 microg x kg(-1) x h(-1) for 10 min; maintenance, 0.4 microg x kg(-1) x h(-1) for 60 min) infusions in a randomized, double-blind, crossover study. After 70 min of drug administration, dynamic cerebral autoregulation was estimated by transfer function analysis between arterial pressure variability and CBF velocity variability, and the thigh cuff method. Results Compared with placebo, steady state CBF velocity and mean blood pressure significantly decreased during administration of dexmedetomidine. Transfer function gain in the very-low-frequency range increased and phase in the low-frequency range decreased significantly, suggesting alterations in dynamic cerebral autoregulation in lower frequency ranges. Moreover, the dynamic rate of regulation and percentage restoration in CBF velocity significantly decreased when a temporal decrease in arterial pressure was induced by thigh cuff release. Conclusion Contrary to the authors' hypothesis, the current results of two experimental analyses suggest together that dexmedetomidine weakens dynamic cerebral autoregulation and delays restoration in CBF velocity during conditions of decreased steady state CBF velocity. Therefore, dexmedetomidine may lead to further sustained reductions in CBF during temporal decreases in arterial pressure.


2019 ◽  
Vol 126 (6) ◽  
pp. 1694-1700 ◽  
Author(s):  
M. Erin Moir ◽  
Stephen A. Klassen ◽  
Baraa K. Al-Khazraji ◽  
Emilie Woehrle ◽  
Sydney O. Smith ◽  
...  

Breath-hold divers (BHD) experience repeated bouts of severe hypoxia and hypercapnia with large increases in blood pressure. However, the impact of long-term breath-hold diving on cerebrovascular control remains poorly understood. The ability of cerebral blood vessels to respond rapidly to changes in blood pressure represents the property of dynamic autoregulation. The current investigation tested the hypothesis that breath-hold diving impairs dynamic autoregulation to a transient hypotensive stimulus. Seventeen BHD (3 women, 11 ± 9 yr of diving) and 15 healthy controls (2 women) completed two or three repeated sit-to-stand trials during spontaneous breathing and poikilocapnic conditions. Heart rate (HR), finger arterial blood pressure (BP), and cerebral blood flow velocity (BFV) from the right middle cerebral artery were measured continuously with three-lead electrocardiography, finger photoplethysmography, and transcranial Doppler ultrasonography, respectively. End-tidal carbon dioxide partial pressure was measured with a gas analyzer. Offline, an index of cerebrovascular resistance (CVRi) was calculated as the quotient of mean BP and BFV. The rate of the drop in CVRi relative to the change in BP provided the rate of regulation [RoR; (∆CVRi/∆T)/∆BP]. The BHD demonstrated slower RoR than controls ( P ≤ 0.001, d = 1.4). Underlying the reduced RoR in BHD was a longer time to reach nadir CVRi compared with controls ( P = 0.004, d = 1.1). In concert with the longer CVRi response, the time to reach peak BFV following standing was longer in BHD than controls ( P = 0.01, d = 0.9). The data suggest impaired dynamic autoregulatory mechanisms to hypotension in BHD. NEW & NOTEWORTHY Impairments in dynamic cerebral autoregulation to hypotension are associated with breath-hold diving. Although weakened autoregulation was observed acutely in this group during apneic stress, we are the first to report on chronic adaptations in cerebral autoregulation. Impaired vasomotor responses underlie the reduced rate of regulation, wherein breath-hold divers demonstrate a prolonged dilatory response to transient hypotension. The slower cerebral vasodilation produces a longer perturbation in cerebral blood flow velocity, increasing the risk of cerebral ischemia.


2010 ◽  
Vol 108 (5) ◽  
pp. 1162-1168 ◽  
Author(s):  
Yu-Chieh Tzeng ◽  
Samuel J. E. Lucas ◽  
Greg Atkinson ◽  
Chris K. Willie ◽  
Philip N. Ainslie

The functional relationship between dynamic cerebral autoregulation (CA) and arterial baroreflex sensitivity (BRS) in humans is unknown. Given that adequate cerebral perfusion during normal physiological challenges requires the integrated control of CA and the arterial baroreflex, we hypothesized that between-individual variability in dynamic CA would be related to BRS in humans. We measured R-R interval, blood pressure, and cerebral blood flow velocity (transcranial Doppler) in 19 volunteers. BRS was estimated with the modified Oxford method (nitroprusside-phenylephrine injections) and spontaneous low-frequency (0.04–0.15) α-index. Dynamic CA was quantified using the rate of regulation (RoR) and autoregulatory index (ARI) derived from the thigh-cuff release technique and transfer function analysis of spontaneous oscillations in blood pressure and mean cerebral blood flow velocity. Results show that RoR and ARI were inversely related to nitroprusside BRS [ R = −0.72, confidence interval (CI) −0.89 to −0.40, P = 0.0005 vs. RoR; R = −0.69, CI −0.88 to −0.35, P = 0.001 vs. ARI], phenylephrine BRS ( R = −0.66, CI −0.86 to −0.29, P = 0.0002 vs. RoR; R = −0.71, CI −0.89 to −0.38, P = 0.0001 vs. ARI), and α-index ( R = −0.70, CI −0.89 to −0.40, P = 0.0008 vs. RoR; R = −0.62, CI −0.84 to −0.24, P = 0.005 vs. ARI). Transfer function gain was positively related to nitroprusside BRS ( R = 0.62, CI 0.24–0.84, P = 0.0042), phenylephrine BRS ( R = 0.52, CI 0.10–0.79, P = 0.021), and α-index ( R = 0.69, CI 0.35–0.88, P = 0.001). These findings indicate that individuals with an attenuated dynamic CA have greater BRS (and vice versa), suggesting the presence of possible compensatory interactions between blood pressure and mechanisms of cerebral blood flow control in humans. Such compensatory adjustments may account for the divergent changes in dynamic CA and BRS seen, for example, in chronic hypotension and spontaneous hypertension.


2018 ◽  
Vol 40 (1) ◽  
pp. 135-149 ◽  
Author(s):  
Jan Willem J Elting ◽  
Jeanette Tas ◽  
Marcel JH Aries ◽  
Marek Czosnyka ◽  
Natasha M Maurits

We analysed mean arterial blood pressure, cerebral blood flow velocity, oxygenated haemoglobin and deoxygenated haemoglobin signals to estimate dynamic cerebral autoregulation. We compared macrovascular (mean arterial blood pressure-cerebral blood flow velocity) and microvascular (oxygenated haemoglobin-deoxygenated haemoglobin) dynamic cerebral autoregulation estimates during three different conditions: rest, mild hypocapnia and hypercapnia. Microvascular dynamic cerebral autoregulation estimates were created by introducing the constant time lag plus constant phase shift model, which enables correction for transit time, blood flow and blood volume oscillations (TT-BF/BV correction). After TT-BF/BV correction, a significant agreement between mean arterial blood pressure-cerebral blood flow velocity and oxygenated haemoglobin-deoxygenated haemoglobin phase differences in the low frequency band was found during rest (left: intraclass correlation=0.6, median phase difference 29.5° vs. 30.7°, right: intraclass correlation=0.56, median phase difference 32.6° vs. 39.8°) and mild hypocapnia (left: intraclass correlation=0.73, median phase difference 48.6° vs. 43.3°, right: intraclass correlation=0.70, median phase difference 52.1° vs. 61.8°). During hypercapnia, the mean transit time decreased and blood volume oscillations became much more prominent, except for very low frequencies. The transit time related to blood flow oscillations was remarkably stable during all conditions. We conclude that non-invasive microvascular dynamic cerebral autoregulation estimates are similar to macrovascular dynamic cerebral autoregulation estimates, after TT-BF/BV correction is applied. These findings may increase the feasibility of non-invasive continuous autoregulation monitoring and guided therapy in clinical situations.


Sign in / Sign up

Export Citation Format

Share Document