Electrical stimulation of human lower extremities enhances energy consumption, carbohydrate oxidation, and whole body glucose uptake

2004 ◽  
Vol 96 (3) ◽  
pp. 911-916 ◽  
Author(s):  
Taku Hamada ◽  
Tatsuya Hayashi ◽  
Tetsuya Kimura ◽  
Kazuwa Nakao ◽  
Toshio Moritani

Our laboratory has recently demonstrated that low-frequency electrical stimulation (ES) of quadriceps muscles alone significantly enhanced glucose disposal rate (GDR) during euglycemic clamp (Hamada T, Sasaki H, Hayashi T, Moritani T, and Nakao K. J Appl Physiol 94: 2107–2112, 2003). The present study is further follow-up to examine the acute metabolic effects of ES to lower extremities compared with voluntary cycle exercise (VE) at identical intensity. In eight male subjects lying in the supine position, both lower leg (tibialis anterior and triceps surae) and thigh (quadriceps and hamstrings) muscles were sequentially stimulated to cocontract in an isometric manner at 20 Hz with a 1-s on-off duty cycle for 20 min. Despite small elevation of oxygen uptake by 7.3 ± 0.3 ml·kg-1·min-1 during ES, the blood lactate concentration was significantly increased by 3.2 ± 0.3 mmol/l in initial period (5 min) after the onset of the ES ( P < 0.01), whereas VE showed no such changes at identical oxygen uptake (7.5 ± 0.3 ml·kg-1·min-1). ES also induced enhanced whole body carbohydrate oxidation as shown by the significantly higher respiratory gas exchange ratio than with VE ( P < 0.01). These data indicated increased anaerobic glycolysis by ES. Furthermore, whole body glucose uptake determined by GDR during euglycemic clamp demonstrated a significant increase during and after the cessation of ES for at least 90 min ( P < 0.01). This post-ES effect was significantly greater than that of the post-VE period ( P < 0.01). These results suggest that ES can substantially enhance energy consumption, carbohydrate oxidation, and whole body glucose uptake at low intensity of exercise. Percutaneous ES may become a therapeutic utility to enhance glucose metabolism in humans.

Author(s):  
Yung-Chih Chen ◽  
Russell G Davies ◽  
Aaron Hengist ◽  
Harriet A Carroll ◽  
Oliver J Perkin ◽  
...  

It is unclear whether NeuroMuscular Electrical Stimulation (NMES) has meaningful metabolic effects when users have the opportunity to self-select the intensity to one that can be comfortably tolerated. Nine healthy men aged 28 ± 9 y (mean ± SD) with a body mass index 22.3 ± 2.3 kg/m2 completed 3 trials involving a 2-h oral glucose tolerance test whilst, in a randomized counterbalanced order, (1) sitting motionless (SIT), (2) standing motionless (STAND); and (3) sitting motionless with NMES of quadriceps and calves at a self-selected tolerable intensity. Mean (95% confidence interval [CI]) total energy expenditure was greater in the NMES trial (221 [180–262] kcal/2 h) and STAND trial (178 [164–191] kcal/2 h) than during SIT (159 [150–167] kcal/2 h) (both, p < 0.05). This was primarily driven by an increase in carbohydrate oxidation in the NMES and STAND trials compared to SIT (p < 0.05). Postprandial insulin iAUC was lower in both NMES and STAND compared to SIT (16.4 [7.7–25.1], 17 [7–27] & 22.6 [10.8–34.4] nmol·120 min/L, respectively; both, p < 0.05). Compared with sitting, both NMES and STAND increased energy expenditure and whole-body carbohydrate oxidation and reduced postprandial insulin concentrations in healthy men, with more-pronounced effects seen with NMES. Self-selected NMES is a potential strategy to improve metabolic health. This trial is registered at ClinicalTrials.gov (ID: NCT04389736). Novelty • NMES at a comfortable intensity enhances energy expenditure & carbohydrate oxidation and reduces postprandial insulinemia. • Thus, self-selected NMES represents a potential strategy to improve metabolic health.


2003 ◽  
Vol 94 (6) ◽  
pp. 2107-2112 ◽  
Author(s):  
Taku Hamada ◽  
Hideki Sasaki ◽  
Tatsuya Hayashi ◽  
Toshio Moritani ◽  
Kazuwa Nakao

There is considerable evidence to suggest that electrical stimulation (ES) activates glucose uptake in rodent skeletal muscle. It is, however, unknown whether ES can lead to similar metabolic enhancement in humans. We employed low-frequency ES through surface electrodes placed over motor points of quadriceps femoris muscles. In male subjects lying in the supine position, the highest oxygen uptake was obtained by a stimulation pattern with 0.2-ms biphasic square pulses at 20 Hz and a 1-s on-off duty cycle. Oxygen uptake was increased by approximately twofold throughout the 20-min stimulation period and returned to baseline immediately after stimulation. Concurrent elevation of the respiratory exchange ratio and blood lactate concentration indicated anaerobic glycogen breakdown and utilization during ES. Whole body glucose uptake determined by the glucose disposal rate during euglycemic clamp was acutely increased by 2.5 mg · kg−1 · min−1in response to ES and, moreover, remained elevated by 3–4 mg · kg−1 · min−1for at least 90 min after cessation of stimulation. Thus the stimulatory effect of ES on whole body glucose uptake persisted not only during, but also after, stimulation. Low-frequency ES may become a useful therapeutic approach to activate energy and glucose metabolism in humans.


1994 ◽  
Vol 86 (6) ◽  
pp. 677-687 ◽  
Author(s):  
J. Webber ◽  
E. Simpson ◽  
H. Parkin ◽  
I. A. MacDonald

1. The effects of acutely raising blood ketone body levels to those seen after 72 h of starvation were examined in 10 subjects after an overnight fast. Metabolic rate and respiratory exchange ratio were measured with indirect calorimetry before and during an insulin—glucose clamp. Arteriovenous differences were measured across forearm and subcutaneous abdominal adipose tissue. 2. In response to the clamp the respiratory exchange ratio rose from 0.82 to 0.83 during 3-hydroxybutyrate infusion and from 0.83 to 0.94 during control (saline) infusion (P < 0.001). 3. Forearm glucose uptake at the end of the clamp was 4.02 ± 0.95 (3-hydroxybutyrate infusion) and 7.09 ± 1.24 mmol min−1 100 ml−1 forearm (saline infusion). Whole body glucose uptake at the end of the clamp was 72.8 ± 7.9 (3-hydroxybutyrate infusion) and 51.0 ± 3.0 (saline infusion) mmol min−1 kg−1 body weight−1. 4. 3-Hydroxybutyrate infusion reduced the baseline abdominal venous—arterialized venous glycerol difference from 84 ± 28 to 25 ± 12 mmol/l and the non-esterified fatty acid difference from 0.60 ± 0.17 to 0.02 ± 0.09 mmol/l (P < 0.05 versus saline infusion). 5. Hyperketonaemia reduces adipose tissue lipolysis and decreases insulin-mediated forearm glucose uptake. Hyperketonaemia appears to prevent insulin-stimulated glucose oxidation, but does not reduce insulin-mediated glucose storage.


1992 ◽  
Vol 263 (5) ◽  
pp. E850-E855 ◽  
Author(s):  
L. Simonsen ◽  
J. Bulow ◽  
J. Madsen ◽  
N. J. Christensen

Whole body energy expenditure, thermogenic and metabolic changes in the forearm, and intercellular glucose concentrations in subcutaneous adipose tissue on the abdomen determined by microdialysis were measured during epinephrine infusion in healthy subjects. After a control period, epinephrine was infused at rates of 0.2 and 0.4 nmol.kg-1 x min-1. Whole body resting energy expenditure was 4.36 +/- 0.56 (SD) kJ/min. Energy expenditure increased to 5.14 +/- 0.74 and 5.46 +/- 0.79 kJ/min, respectively (P < 0.001), during the epinephrine infusions. Respiratory exchange ratio was 0.80 +/- 0.04 in the resting state and did not change. Local forearm oxygen uptake was 3.9 +/- 1.3 mumol.100 g-1 x min-1 in the basal period. During epinephrine infusion, it increased to 5.8 +/- 2.1 (P < 0.03) and 7.5 +/- 2.3 mumol.100 g-1 x min-1 (P < 0.001). Local forearm glucose uptake was 0.160 +/- 0.105 mumol.100 g-1 x min-1 and increased to 0.586 +/- 0.445 and 0.760 +/- 0.534 mumol.100 g-1 x min-1 (P < 0.025). The intercellular glucose concentration in the subcutaneous adipose tissue on the abdomen was equal to the arterial concentration in the basal period but did not increase as much during infusion of epinephrine, indicating glucose uptake in adipose tissue in this condition. If it is assumed that forearm skeletal muscle is representative for the average skeletal muscle, it can be calculated that on average 40% of the enhanced whole body oxygen uptake induced by infusion of epinephrine is taking place in skeletal muscle. It is proposed that adipose tissue may contribute to epinephrine-induced thermogenesis.


1988 ◽  
Vol 64 (5) ◽  
pp. 1923-1929 ◽  
Author(s):  
J. J. Knapik ◽  
C. N. Meredith ◽  
B. H. Jones ◽  
L. Suek ◽  
V. R. Young ◽  
...  

Metabolic effects of an overnight fast (postabsorptive state, PA) or a 3.5-day fast (fasted state, F) were compared in eight healthy young men at rest and during exercise to exhaustion at 45% maximum O2 uptake. Glucose rate of appearance (Ra) and disappearance (Rd) were calculated from plasma glucose enrichment during a primed, continuous infusion of [6,6–2H]glucose. Serum substrates and insulin levels were measured and glycogen content of the vastus lateralis was determined in biopsies taken before and after exercise. At rest, whole-body glucose flux (determined by the deuterated tracer) and carbohydrate oxidation (determined from respiratory exchange ratio) were lower in F than PA, but muscle glycogen levels were similar. During exercise, glucose flux, whole-body carbohydrate oxidation, and the rate of muscle glycogen utilization were significantly lower during the fast. In the PA state, glucose Ra and Rd increased together throughout exercise. However, in the F state Ra exceeded Rd during the 1st h of exercise, causing an increase in plasma glucose to levels similar to those of the PA state. The increase in glucose flux was markedly less throughout F exercise. Lower carbohydrate utilization in the F state was accompanied by higher circulating fatty acids and ketone bodies, lower plasma insulin levels, and the maintenance of physical performance reflected by similar time to exhaustion.


2011 ◽  
Vol 70 (7) ◽  
pp. 690-695 ◽  
Author(s):  
Ferdinand Binkofski ◽  
Michaela Loebig ◽  
Kamila Jauch-Chara ◽  
Sigrid Bergmann ◽  
Uwe H. Melchert ◽  
...  

2017 ◽  
Vol 313 (1) ◽  
pp. R19-R28 ◽  
Author(s):  
Dane M. Horton ◽  
David A. Saint ◽  
Julie A. Owens ◽  
Kathryn L. Gatford ◽  
Karen L. Kind

The guinea pig is an alternate small animal model for the study of metabolism, including insulin sensitivity. However, only one study to date has reported the use of the hyperinsulinemic euglycemic clamp in anesthetized animals in this species, and the dose response has not been reported. We therefore characterized the dose-response curve for whole body glucose uptake using recombinant human insulin in the adult guinea pig. Interspecies comparisons with published data showed species differences in maximal whole body responses (guinea pig ≈ human < rat < mouse) and the insulin concentrations at which half-maximal insulin responses occurred (guinea pig > human ≈ rat > mouse). In subsequent studies, we used concomitant d-[3-3H]glucose infusion to characterize insulin sensitivities of whole body glucose uptake, utilization, production, storage, and glycolysis in young adult guinea pigs at human insulin doses that produced approximately half-maximal (7.5 mU·min−1·kg−1) and near-maximal whole body responses (30 mU·min−1·kg−1). Although human insulin infusion increased rates of glucose utilization (up to 68%) and storage and, at high concentrations, increased rates of glycolysis in females, glucose production was only partially suppressed (~23%), even at high insulin doses. Fasting glucose, metabolic clearance of insulin, and rates of glucose utilization, storage, and production during insulin stimulation were higher in female than in male guinea pigs ( P < 0.05), but insulin sensitivity of these and whole body glucose uptake did not differ between sexes. This study establishes a method for measuring partitioned glucose metabolism in chronically catheterized conscious guinea pigs, allowing studies of regulation of insulin sensitivity in this species.


2005 ◽  
Vol 289 (2) ◽  
pp. E306-E312 ◽  
Author(s):  
Matthew P. Harber ◽  
Simon Schenk ◽  
Ariel L. Barkan ◽  
Jeffrey F. Horowitz

Dietary carbohydrate restriction (CR) presents a challenge to glucose homeostasis. Despite the popularity of CR diets, little is known regarding the metabolic effects of CR. The purpose of this study was to examine changes in whole body carbohydrate oxidation, glucose availability, endogenous glucose production, and peripheral glucose uptake after dietary CR, without the confounding influence of a negative energy balance. Postabsorptive rates of glucose appearance in plasma (Ra; i.e., endogenous glucose production) and disappearance from plasma (Rd; i.e., glucose uptake) were measured using isotope dilution methods after a conventional diet [60% carbohydrate (CHO), 30% fat, and 10% protein; kcals = 1.3 × resting energy expenditure (REE)] and after 2 days and 7 days of CR (5% CHO, 60% fat, and 35% protein; kcals = 1.3 × REE) in eight subjects (means ± SE; 29 ± 4 yr; BMI 24 ± 1 kg/m2) during a 9-day hospital visit. Postabsorptive plasma glucose concentration was reduced ( P = 0.01) after 2 days but returned to prediet levels the next day and remained at euglycemic levels throughout the diet (5.1 ± 0.2, 4.3 ± 0.3, and 4.8 ± 0.4 mmol/l for prediet, 2 days and 7 days, respectively). Glucose Ra and glucose Rd were reduced to below prediet levels (9.8 ± 0.6 μmol·kg−1·min−1) after 2 days of CR (7.9 ± 0.3 μmol·kg−1·min−1) and remained suppressed after 7 days (8.3 ± 0.4 μmol·kg−1·min−1; both P < 0.001). A greater suppression in carbohydrate oxidation, compared with the reduction in glucose Rd, led to an increased (all P ≤ 0.05) rate of nonoxidative glucose disposal at 7 days (5.2 ± 0.5 μmol·kg−1·min−1), compared with 2 days (2.7 ± 0.5 μmol·kg−1·min−1) and prediet (1.6 ± 0.8 μmol·kg−1·min−1). In response to eucaloric CR, a marked increase in nonoxidative glucose disposal may help maintain systemic glucose availability.


Sign in / Sign up

Export Citation Format

Share Document