scholarly journals Roller massage decreases spinal excitability to the soleus

2018 ◽  
Vol 124 (4) ◽  
pp. 950-959 ◽  
Author(s):  
James D. Young ◽  
Alyssa-Joy Spence ◽  
David G. Behm

Roller massage (RM) interventions have shown acute increases in range of motion (ROM) and pain pressure threshold (PPT). It is unclear whether the RM-induced increases can be attributed to changes in neural or muscle responses. The purpose of this study was to evaluate the effect of altered afferent input via application of RM on spinal excitability, as measured with the Hoffmann (H-) reflex. A randomized within-subjects design was used. Three 30-s bouts of RM were implemented on a rested, nonexercised, injury-free muscle with 30 s of rest between bouts. The researcher applied RM to the plantar flexors at three intensities of pain: high, moderate, and sham. Measures included normalized M-wave and H-reflex peak-to-peak amplitudes before, during, and up to 3 min postintervention. M-wave and H-reflex measures were highly reliable. RM resulted in significant decreases in soleus H-reflex amplitudes. High-intensity, moderate-intensity, and sham conditions decreased soleus H-reflex amplitudes by 58%, 43%, and 19%, respectively. H-reflexes induced with high-intensity rolling discomfort or pain were significantly lower than moderate and sham conditions. The effects were transient in nature, with an immediate return to baseline following RM. This is the first evidence of RM-induced modulation of spinal excitability. The intensity-dependent response observed indicates that rolling pressure or pain perception may play a role in modulation of the inhibition. Roller massage-induced neural modulation of spinal excitability may explain previously reported increases in ROM and PPT. NEW & NOTEWORTHY Recent evidence indicates that the benefits of foam rolling and roller massage are primarily accrued through neural mechanisms. The present study attempts to determine the neuromuscular response to roller massage interventions. We provide strong evidence of roller massage-induced neural modulation of spinal excitability to the soleus. It is plausible that reflex inhibition may explain subsequent increases in pain pressure threshold.

2021 ◽  
pp. 665-671
Author(s):  
Masatoshi Nakamura ◽  
Andreas Konrad ◽  
Kiyono Ryosuke ◽  
Shigeru Sato ◽  
Kaoru Yahata ◽  
...  

Self-massage using foam rollers, sticks, or balls has become a popular technique to enhance joint range of motion (ROM). Although increases are reported to be larger in females than males, the mechanisms of this observation are unclear. The present study aimed to investigate the effect of roller massage (RM) on ROM, passive tissue stiffness, and neurophysiological markers as a function of sex. Males (n = 15, 22.8 ± 2.9 yrs.) and females (n = 14, 21.1 ± 0.7 yrs.) performed three 60-second bouts of calf RM. Outcomes assessed pre-, and post-intervention included passive dorsiflexion (DF) ROM, passive tissue stiffness, passive torque, DF angle at the first stretch sensation, shear elastic modulus, and spinal excitability. DF ROM (+35.9 %), passive torque at DF ROM (+46.4 %), DF angle at first stretch sensation (+32.9 %), and pain pressure threshold (+25.2 %) increased in both groups (p<.05) with no differences between males and females (p > 0.05). No changes were observed for passive stiffness, shear elastic modulus, and spinal excitability (p > 0.05). Roller massage may increase ROM independently of sex, which, in the present study, could not be ascribed to alterations in passive stiffness or neurophysiological markers. Future studies may further elucidate the role of sensory alterations as possible factors driving RM-induced changes in flexibility.


Cephalalgia ◽  
1996 ◽  
Vol 16 (1) ◽  
pp. 62-66 ◽  
Author(s):  
G Bono ◽  
F Antonaci ◽  
G Sandrini ◽  
E Pucci ◽  
G Nappi ◽  
...  

Pain perception threshold (PFT) in the head was assessed with a pressure algometer in 58 cluster headache (CH) patients (52M, 6F; 41 episodic and 17 chronic). Fourteen patients in cluster period were retested in remission. Thresholds were assessed at 10 symmetrical points on each side of the head and at the deltoid. Compared with controls ( n = 80), CH patients had lower PPT in the head and in the deltoid. PPT was lower on the symptomatic side than on the non-symptomatic side in patients with episodic CH during a cluster period ( p<0.001) and in patients with chronic CH ( p<0.05). This pattern was more evident during a cluster period than during remission ( p<0.05). A reduced PPT did not correlate with illness duration and pain side. The lowest PPT mean values were found at the anterior and intermediate levels of the temporal muscle on the symptomatic side. These results imply a central mechanism underlying the pathogenesis of CH.


2019 ◽  
Vol 127 (1) ◽  
pp. 89-97 ◽  
Author(s):  
Carla Silva-Batista ◽  
Jumes Leopoldino de Oliveira Lira ◽  
Fabian J. David ◽  
Daniel M. Corcos ◽  
Eugenia Casella Tavares Mattos ◽  
...  

This study had two objectives: 1) to compare the effects of 3 wk of resistance training (RT) and resistance training with instability (RTI) on evoked reflex responses at rest and during maximal voluntary isometric contraction (MVIC) of individuals with Parkinson’s disease (PD) and 2) to determine the effectiveness of RT and RTI in moving values of evoked reflex responses of individuals with PD toward values of age-matched healthy control subjects (HCs) ( z-score analysis). Ten individuals in the RT group and 10 in the RTI group performed resistance exercises twice a week for 3 wk, but only the RTI group included unstable devices. The HC group ( n = 10) were assessed at pretest only. Evoked reflex responses at rest (H reflex and M wave) and during MVIC [supramaximal M-wave amplitude (Msup) and supramaximal V-wave amplitude (Vsup)] of the plantar flexors were assessed before and after the experimental protocol. From pretraining to posttraining, only RTI increased ratio of maximal H-reflex amplitude to maximal M-wave amplitude at rest (Hmax/Mmax), Msup, Vsup/Msup, and peak torque of the plantar flexors ( P < 0.05). At posttraining, RTI was more effective than RT in increasing resting Hmax and Vsup and in moving these values to those observed in HCs ( P < 0.05). We conclude that short-term RTI is more effective than short-term RT in modulating H-reflex excitability and in increasing efferent neural drive, approaching average values of HCs. Thus short-term RTI may cause positive changes at the spinal and supraspinal levels in individuals with PD. NEW & NOTEWORTHY Maximal H-reflex amplitude (Hmax) at rest and efferent neural drive [i.e., supramaximal V-wave amplitude (Vsup)] to skeletal muscles during maximal contraction are impaired in individuals with Parkinson’s disease. Short-term resistance training with instability was more effective than short-term resistance training alone in increasing Hmax and Vsup of individuals with Parkinson’s disease, reaching the average values of healthy control subjects.


2020 ◽  
Vol 9 (8) ◽  
pp. 2411 ◽  
Author(s):  
Gemma Victoria Espí-López ◽  
Anna Arnal-Gómez ◽  
Alba Cuerda del Pino ◽  
José Benavent-Corai ◽  
Pilar Serra-Añó ◽  
...  

Background: Isolated manual therapy techniques (MT) have shown beneficial effects in patients with temporomandibular disorders (TMD) but the effect of the combination of such techniques, together with the well-stablished splint therapy (ST) remains to be elucidated. Objective: This study was conducted to ascertain whether a combined program of MT techniques, including intraoral treatment, plus traditional ST improves pain and clinical dysfunction in subjects with TMD. Methods: A preliminary trial was conducted. 16 participants were assigned to either the MT plus ST-Experimental Group (EG, n = 8) or the ST alone—Control Group (CG, n = 8). Forty-five minute sessions of combined MT techniques were performed, once a week for four weeks. Three evaluations were conducted: baseline, post-treatment, and one-month follow-up. Outcome measures were pain perception, pain pressure threshold (PPT), TMD dysfunction, and perception of change after treatment. Results: EG showed significant reduction on pain, higher PPT, significant improvement of dysfunction and significantly positive perception of change after treatment (p < 0.05 all). Additionally, such positive effects were maintained at follow-up with a high treatment effect (R2 explaining 26.6–33.2% of all variables). Conclusion: MT plus ST showed reduction on perceived pain (3 points decrease), higher PPT (of at least 1.0 kg/cm2), improvement of disability caused by pain (4.4 points decrease), and positive perception of change (EG: 50% felt “much improvement”), compared to ST alone.


2012 ◽  
Vol 112 (1) ◽  
pp. 54-63 ◽  
Author(s):  
Carolina Vila-Chã ◽  
Deborah Falla ◽  
Miguel Velhote Correia ◽  
Dario Farina

This study examined the effects of 3 wk of either endurance or strength training on plasticity of the neural mechanisms involved in the soleus H reflex and V wave. Twenty-five sedentary healthy subjects were randomized into an endurance group ( n = 13) or strength group ( n = 12). Evoked V-wave, H-reflex, and M-wave recruitment curves, maximal voluntary contraction (MVC), and time-to-task-failure (isometric contraction at 40% MVC) of the plantar flexors were recorded before and after training. Following strength training, MVC of the plantar flexors increased by 14.4 ± 5.2% in the strength group ( P < 0.001), whereas time-to-task-failure was prolonged in the endurance group (22.7 ± 17.1%; P < 0.05). The V wave-to-maximal M wave (V/Mmax) ratio increased significantly (55.1 ± 28.3%; P < 0.001) following strength training, but the maximal H wave-to-maximal M wave (Hmax/Mmax) ratio remained unchanged. Conversely, in the endurance group the V/Mmax ratio was not altered, whereas the Hmax/Mmax ratio increased by 30.8 ± 21.7% ( P < 0.05). The endurance training group also displayed a reduction in the H-reflex excitability threshold while the H-reflex amplitude on the ascending limb of the recruitment curve increased. Strength training only elicited a significant decrease in H-reflex excitability threshold, while H-reflex amplitudes over the ascending limb remained unchanged. These observations indicate that the H-reflex pathway is strongly involved in the enhanced endurance resistance that occurs following endurance training. On the contrary, the improvements in MVC following strength training are likely attributed to increased descending drive and/or modulation in afferents other than Ia afferents.


2007 ◽  
Vol 97 (1) ◽  
pp. 596-603 ◽  
Author(s):  
S. Racinais ◽  
O. Girard ◽  
J. P. Micallef ◽  
S. Perrey

The main purpose of this study was to investigate the modulations in H-reflex and V-wave responses (spinal loop properties) induced by prolonged locomotion activities. The second purpose was to compare the development of central fatigue between continuous and intermittent running modes. Eleven males randomly performed two 90-min running exercises either continuously (CONT, first ventilatory threshold) or intermittently (INT, 150 s at a velocity 20% higher than that during CONT/30 s of recovery). Neuromuscular tests of the plantar flexors [including M-wave and H-reflex at rest and M-wave and V-wave during maximal voluntary contraction (MVC)] were performed before and 5 and 30 min after the running exercises. During MVC, the torque significantly decreased ( P < 0.05) from preexercise to 5 and 30 min postexercise (−11 and −9%, respectively), as did the RMS/M ratio (−11 and −13%, respectively) and the V/M ratio (−19 and −37%, respectively) for the soleus muscle. At rest, the H/M ratio also decreased significantly ( P < 0.001) from preexercise to 5 and 30 min postexercise (−61 and −55%, respectively). Last, no difference in the alteration of spinal loop properties was noted between CONT and INT. In conclusion, the results regarding H-reflex and V-wave suggest for the first time a modulation in spinal loop properties after prolonged running.


2020 ◽  
Vol 3 (1) ◽  
pp. 111-122
Author(s):  
Azizeh Parandnia ◽  
◽  
Marzieh Yassin ◽  
Javad Sarrafzadeh ◽  
Reza Salehi ◽  
...  

Background & Objectives: Myofascial Trigger Point (MTrP) is one of the most common musculoskeletal disorders. The MTrP includes highly sensitive points within a taut band, is painful to palpation, and causes pain in a specific pattern. The MTrP is more prevalent in the upper trapezius muscle because this muscle plays an important role in maintaining the posture of the head and neck. This study aimed to compare the effects of dry needling and high-intensity laser therapy on the clinical signs of females with active trigger points in the upper trapezius muscle. Methods: Thirty females with the active MTrP of the upper trapezius muscle were randomly assigned into two groups: high-intensity laser therapy group (n=15) and dry needling group (n=15); they received the interventions in five sessions for three weeks. The outcome measures included pain intensity and pain pressure threshold, which were assessed before and two days after the interventions. Results: In both study groups, the scores of the visual analogue scale of pain were significantly decreased, also, the pain pressure threshold was significantly increased (P=0.001), after the treatment. However, the two groups did not significantly differ in any of the outcome measures (P>0.05). Conclusion: Both high-intensity laser therapy and dry needling can be employed to treat the MTrP of the upper trapezius muscle. Considering the effectiveness of the two treatments, each of the methods can be alternatively selected for these patients.


Author(s):  
Tiril Tøien ◽  
Håvard Haglo ◽  
Stian Kwak Nyberg ◽  
Shalini Vasudev Rao ◽  
Astrid Kamilla Stunes ◽  
...  

Abstract Introduction Maximal strength training (MST), performed with heavy loads (~ 90% of one repetition maximum; 1RM) and few repetitions, yields large improvements in efferent neural drive, skeletal muscle force production, and skeletal muscle efficiency. However, it is elusive whether neural adaptations following such high intensity strength training may be accompanied by alterations in energy-demanding muscular factors. Methods Sixteen healthy young males (24 ± 4 years) were randomized to MST 3 times per week for 8 weeks (n = 8), or a control group (CG; n = 8). Measurements included 1RM and rate of force development (RFD), and evoked potentials recordings (V-wave and H-reflex normalized to M-wave (M) in the soleus muscle) applied to assess efferent neural drive to maximally contracting skeletal muscle. Biopsies were obtained from vastus lateralis and analyzed by western blots and real-time PCR to investigate the relative protein expression and mRNA expression of Sarcoplasmic Reticulum Ca2+ ATPase (SERCA) 1 and SERCA2. Results Significant improvements in 1RM (17 ± 9%; p < 0.001) and early (0–100 ms), late (0–200 ms) and maximal RFD (31–53%; p < 0.01) were observed after MST, accompanied by increased maximal Vmax/Msup-ratio (9 ± 14%; p = 0.046), with no change in H-reflex to M-wave ratio. No changes were observed in the CG. No pre- to post-training differences were found in mRNA or protein expressions of SERCA1 and SERCA2 in either group. Conclusion MST increased efferent neural drive to maximally contracting skeletal muscle, causing improved force production. No change was observed in SERCA expression, indicating that responses to high intensity strength training may predominantly be governed by neural adaptations.


2016 ◽  
Vol 22 (7) ◽  
pp. 546-556 ◽  
Author(s):  
Susanne Janum ◽  
Signe T Nielsen ◽  
Mads U Werner ◽  
Jesper Mehlsen ◽  
Henrik Kehlet ◽  
...  

We aimed to study the relationship between pain perception and cytokine release during systemic inflammation. We present a randomized crossover trial in healthy volunteers ( n = 17) in 37 individual trials. Systemic inflammation was induced by an i.v. bolus of Escherichia coli LPS (2 ng/kg) on two separate trial days, with or without a nicotine patch applied 10 h previously. Pain perception at baseline, and 2 and 6 h after LPS was assessed by pressure algometry and tonic heat stimulation at an increasing temperature (45–48℃) during both trials. Compared with baseline, pain pressure threshold was reduced 2 and 6 h after LPS, while heat pain perception was accentuated at all testing temperatures after 2 but not 6 h. The magnitude of changes in pain perception did not correlate to cytokine release. No effect of transdermal nicotine or training status was observed. In conclusion, LPS administration in healthy human volunteers leads to reduction in pain pressure threshold and an increase in pain perception to heat stimuli, supporting a relationship between acute systemic inflammation and pain perception.


2005 ◽  
Vol 94 (5) ◽  
pp. 3555-3562 ◽  
Author(s):  
Julien Duclay ◽  
Alain Martin

This study was designed to investigate the modulations of H-reflex and V-wave responses during passive and maximal active dynamic actions. Experiments were performed on 16 healthy males [age: 24 ± 4 (SD) yr]. Maximal H-reflexes ( Hmax) and M-waves ( MmaxR) were evoked at the same muscle length during passive isometric, shortening and lengthening actions and during maximal voluntary isometric, concentric, and eccentric plantar-flexion. In all contraction types, supra-maximal stimulus intensity was used to evoke the superimposed maximal M wave ( MmaxA) and V wave ( V) of the soleus muscle. At rest, the Hmax/ MmaxR ratio was significantly reduced during lengthening with respect to isometric and shortening actions ( P < 0.05). For each action type, the ratio between H reflex superimposed to the contraction ( Hsup) and MmaxA was not different from Hmax/ MmaxR ratio. When plantar flexors were maximally voluntary activated, the Hsup/ MmaxA ratio was still lower during eccentric contraction as compared with isometric and concentric efforts (0.33 ± 0.03 vs. 0.47 ± 0.02 and 0.50 ± 0.03, P < 0.001), whereas V/ MmaxA ratios were similar for all contraction types (isometric 0.26 ± 0.02; concentric 0.23 ± 0.03, and eccentric 0.24 ± 0.02; P > 0.05). The V/ MmaxA ratio was significantly lower than Hsup/ MmaxA during isometric and concentric MVC ( P < 0.001). No difference was observed between V/ MmaxA and Hsup/ MmaxA ratios during eccentric efforts. The H-reflex modulations, present during lengthening actions, were mainly attributed to presynaptic inhibition of Ia afferents and to homosynaptic postactivation depression. Results on V wave and H reflex suggest that during eccentric MVC, the spinal loop is specifically modulated by the supra-spinal centers and/or neural mechanisms at spinal level.


Sign in / Sign up

Export Citation Format

Share Document