Independent metabolic costs of supporting body weight and accelerating body mass during walking

2005 ◽  
Vol 98 (2) ◽  
pp. 579-583 ◽  
Author(s):  
Alena Grabowski ◽  
Claire T. Farley ◽  
Rodger Kram

The metabolic cost of walking is determined by many mechanical tasks, but the individual contribution of each task remains unclear. We hypothesized that the force generated to support body weight and the work performed to redirect and accelerate body mass each individually incur a significant metabolic cost during normal walking. To test our hypothesis, we measured changes in metabolic rate in response to combinations of simulated reduced gravity and added loading. We found that reducing body weight by simulating reduced gravity modestly decreased net metabolic rate. By calculating the metabolic cost per Newton of reduced body weight, we deduced that generating force to support body weight comprises ∼28% of the metabolic cost of normal walking. Similar to previous loading studies, we found that adding both weight and mass increased net metabolic rate in more than direct proportion to load. However, when we added mass alone by using a combination of simulated reduced gravity and added load, net metabolic rate increased about one-half as much as when we added both weight and mass. By calculating the cost per kilogram of added mass, we deduced that the work performed on the center of mass comprises ∼45% of the metabolic cost of normal walking. Our findings support the hypothesis that force and work each incur a significant metabolic cost. Specifically, the cost of performing work to redirect and accelerate the center of mass is almost twice as great as the cost of generating force to support body weight.

2003 ◽  
Vol 94 (5) ◽  
pp. 1766-1772 ◽  
Author(s):  
Jinger S. Gottschall ◽  
Rodger Kram

We reasoned that with an optimal aiding horizontal force, the reduction in metabolic rate would reflect the cost of generating propulsive forces during normal walking. Furthermore, the reductions in ankle extensor electromyographic (EMG) activity would indicate the propulsive muscle actions. We applied horizontal forces at the waist, ranging from 15% body weight aiding to 15% body weight impeding, while subjects walked at 1.25 m/s. With an aiding horizontal force of 10% body weight, 1) the net metabolic cost of walking decreased to a minimum of 53% of normal walking, 2) the mean EMG of the medial gastrocnemius (MG) during the propulsive phase decreased to 59% of the normal walking magnitude, and yet 3) the mean EMG of the soleus (Sol) did not decrease significantly. Our data indicate that generating horizontal propulsive forces constitutes nearly half of the metabolic cost of normal walking. Additionally, it appears that the MG plays an important role in forward propulsion, whereas the Sol does not.


1999 ◽  
Vol 86 (5) ◽  
pp. 1657-1662 ◽  
Author(s):  
Young-Hui Chang ◽  
Rodger Kram

Previous studies have suggested that generating vertical force on the ground to support body weight (BWt) is the major determinant of the metabolic cost of running. Because horizontal forces exerted on the ground are often an order of magnitude smaller than vertical forces, some have reasoned that they have negligible cost. Using applied horizontal forces (AHF; negative is impeding, positive is aiding) equal to −6, −3, 0, +3, +6, +9, +12, and +15% of BWt, we estimated the cost of generating horizontal forces while subjects were running at 3.3 m/s. We measured rates of oxygen consumption (V˙o 2) for eight subjects. We then used a force-measuring treadmill to measure ground reaction forces from another eight subjects. With an AHF of −6% BWt,V˙o 2 increased 30% compared with normal running, presumably because of the extra work involved. With an AHF of +15% BWt, the subjects exerted ∼70% less propulsive impulse and exhibited a 33% reduction inV˙o 2. Our data suggest that generating horizontal propulsive forces constitutes more than one-third of the total metabolic cost of normal running.


1998 ◽  
Vol 201 (19) ◽  
pp. 2745-2751 ◽  
Author(s):  
T J Roberts ◽  
R Kram ◽  
P G Weyand ◽  
C R Taylor

Similarly sized bipeds and quadrupeds use nearly the same amount of metabolic energy to run, despite dramatic differences in morphology and running mechanics. It has been shown that the rate of metabolic energy use in quadrupedal runners and bipedal hoppers can be predicted from just body weight and the time available to generate force as indicated by the duration of foot-ground contact. We tested whether this link between running mechanics and energetics also applies to running bipeds. We measured rates of energy consumption and times of foot contact for humans (mean body mass 78.88 kg) and five species of birds (mean body mass range 0.13-40.1 kg). We find that most (70-90%) of the increase in metabolic rate with speed in running bipeds can be explained by changes in the time available to generate force. The rate of force generation also explains differences in metabolic rate over the size range of birds measured. However, for a given rate of force generation, birds use on average 1.7 times more metabolic energy than quadrupeds. The rate of energy consumption for a given rate of force generation for humans is intermediate between that of birds and quadrupeds. These results support the idea that the cost of muscular force production determines the energy cost of running and suggest that bipedal runners use more energy for a given rate of force production because they require a greater volume of muscle to support their body weight.


1999 ◽  
Vol 86 (1) ◽  
pp. 383-390 ◽  
Author(s):  
Timothy M. Griffin ◽  
Neil A. Tolani ◽  
Rodger Kram

Walking humans conserve mechanical and, presumably, metabolic energy with an inverted pendulum-like exchange of gravitational potential energy and horizontal kinetic energy. Walking in simulated reduced gravity involves a relatively high metabolic cost, suggesting that the inverted-pendulum mechanism is disrupted because of a mismatch of potential and kinetic energy. We tested this hypothesis by measuring the fluctuations and exchange of mechanical energy of the center of mass at different combinations of velocity and simulated reduced gravity. Subjects walked with smaller fluctuations in horizontal velocity in lower gravity, such that the ratio of horizontal kinetic to gravitational potential energy fluctuations remained constant over a fourfold change in gravity. The amount of exchange, or percent recovery, at 1.00 m/s was not significantly different at 1.00, 0.75, and 0.50 G (average 64.4%), although it decreased to 48% at 0.25 G. As a result, the amount of work performed on the center of mass does not explain the relatively high metabolic cost of walking in simulated reduced gravity.


2000 ◽  
Vol 59 (1) ◽  
pp. 103-110 ◽  
Author(s):  
Juan Carlos Senar ◽  
Vicente Polo ◽  
Francesc Uribe ◽  
Montse Camerino

1977 ◽  
Vol 43 (1) ◽  
pp. 126-132 ◽  
Author(s):  
J. E. Greenleaf ◽  
E. M. Bernauer ◽  
L. T. Juhos ◽  
H. L. Young ◽  
J. T. Morse ◽  
...  

To determine the cause of the body weight loss during bed rest (BR), fluid balance and anthropometric measurements were taken from seven men (19–21 yr) during three 2-wk BR periods which were separated by 3-wk ambulatory recovery periods. Caloric intake was 3,073 +/- 155 (SD) kcal/day. During two of the three BR periods they performed supine isotonic exercise at 68% of VO2max on the ergometer for 1 h/day; or supine isometric exercise at 21% of maximal leg extension force for 1 min followed by a 1-min rest for 1 h/day. No prescribed exercise was given during the other BR period. During BR, body weight decreased slightly with no exercise (-0.43 kg, NS), but decreased significantly (P less than 0.05) by -0.91 kg with isometric and by -1.77 kg with isotonic exercise. About one-third of the weight reduction with isotonic exercise was due to fat loss (-0.69 kg) and, the remainder, to loss of lean body mass (-0.98 kg). It is concluded that the reduction in body weight during bed rest has two major components: First, a loss of lean body mass caused by assumption of the horizontal body position that is independent of the metabolic rate. Second, a loss of body fat content that is proportional to the metabolic rate.


2003 ◽  
Vol 95 (1) ◽  
pp. 172-183 ◽  
Author(s):  
Timothy M. Griffin ◽  
Thomas J. Roberts ◽  
Rodger Kram

We sought to understand how leg muscle function determines the metabolic cost of walking. We first indirectly assessed the metabolic cost of swinging the legs and then examined the cost of generating muscular force during the stance phase. Four men and four women walked at 0.5, 1.0, 1.5, and 2.0 m/s carrying loads equal to 0, 10, 20, and 30% body mass positioned symmetrically about the waist. The net metabolic rate increased in nearly direct proportion to the external mechanical power during moderate-speed (0.5–1.5 m/s) load carrying, suggesting that the cost of swinging the legs is relatively small. The active muscle volume required to generate force on the ground and the rate of generating this force accounted for >85% of the increase in net metabolic rate across moderate speeds and most loading conditions. Although these factors explained less of the increase in metabolic rate between 1.5 and 2.0 m/s (∼50%), the cost of generating force per unit volume of active muscle [i.e., the cost coefficient ( k)] was similar across all conditions [ k = 0.11 ± 0.03 (SD) J/cm3]. These data indicate that, regardless of the work muscles do, the metabolic cost of walking can be largely explained by the cost of generating muscular force during the stance phase.


Physiology ◽  
1986 ◽  
Vol 1 (5) ◽  
pp. 153-155
Author(s):  
CR Taylor

African women can carry loads of 20% of their body mass on their heads without measurable metabolic cost. In contrast, trained or untrained humans and animals increase their metabolism by 20% when they carry loads of this magnitude. Two possible mechanisms are proposed for the women's economic means of load carrying, based on considerations of the cost of generating muscular force during locomotion.


2002 ◽  
Vol 205 (23) ◽  
pp. 3717-3727 ◽  
Author(s):  
J. Maxwell Donelan ◽  
Rodger Kram ◽  
Arthur D. Kuo

SUMMARY In the single stance phase of walking, center of mass motion resembles that of an inverted pendulum. Theoretically, mechanical work is not necessary for producing the pendular motion, but work is needed to redirect the center of mass velocity from one pendular arc to the next during the transition between steps. A collision model predicts a rate of negative work proportional to the fourth power of step length. Positive work is required to restore the energy lost, potentially exacting a proportional metabolic cost. We tested these predictions with humans (N=9) walking over a range of step lengths(0.4-1.1 m) while keeping step frequency fixed at 1.8 Hz. We measured individual limb external mechanical work using force plates, and metabolic rate using indirect calorimetry. As predicted, average negative and positive external mechanical work rates increased with the fourth power of step length(from 1 W to 38 W; r2=0.96). Metabolic rate also increased with the fourth power of step length (from 7 W to 379 W; r2=0.95), and linearly with mechanical work rate. Mechanical work for step-to-step transitions, rather than pendular motion itself, appears to be a major determinant of the metabolic cost of walking.


2012 ◽  
Vol 60 (1) ◽  
pp. 54 ◽  
Author(s):  
Sean Tomlinson ◽  
Philip C. Withers ◽  
Shane K. Maloney

Metabolic rate and evaporative water loss (EWL) were measured to quantify the thermoregulatory patterns of two dasyurids, the stripe-faced dunnart (Sminthopsis macroura) and the Ooldea dunnart (S. ooldea) during acute exposure to Ta between 10 and 35°C. S. macroura maintained consistent Tb across the Ta range, whereas S. ooldea was more thermolabile. The metabolic rate of both species decreased from Ta = 10°C to BMR at Ta = 30°C. Mass-adjusted BMR at Ta = 30°C was the same for the two species, but there was no common regression of metabolic rate below the thermoneutral zone (TNZ). There was no significant difference between the species in allometrically corrected EWL at Ta = 30°C. Total EWL increased significantly at Ta = 10 and 35°C compared with the TNZ for S. macroura, but was consistent across the Ta range for S. ooldea. At any Ta below the TNZ, S. macroura required more energy per gram of body mass than S. ooldea, and had a higher EWL at the lower critical Ta. By being thermolabile S. ooldea reduced its energetic requirements and water loss at low Ta. The more constant thermoregulatory strategy of S. macroura may allow it to exploit a broad climatic envelope, albeit at the cost of higher energetic and water requirements. Since S. ooldea does not expend as much energy and water on thermoregulation this may be a response to the very low productivity, ‘hyperarid’ conditions of its central Australian distribution.


Sign in / Sign up

Export Citation Format

Share Document