scholarly journals Quadriceps miR-542-3p and -5p are elevated in COPD and reduce function by inhibiting ribosomal and protein synthesis

2019 ◽  
Vol 126 (6) ◽  
pp. 1514-1524 ◽  
Author(s):  
Roser Farre-Garros ◽  
Jen Y. Lee ◽  
S. Amanda Natanek ◽  
Martin Connolly ◽  
Avan A. Sayer ◽  
...  

Reduced physical performance reduces quality of life in patients with chronic obstructive pulmonary disease (COPD). Impaired physical performance is, in part, a consequence of reduced muscle mass and function, which is accompanied by mitochondrial dysfunction. We recently showed that miR-542-3p and miR-542-5p were elevated in a small cohort of COPD patients and more markedly in critical care patients. In mice, these microRNAs (miRNAs) promoted mitochondrial dysfunction suggesting that they would affect physical performance in patients with COPD, but we did not explore the association of these miRNAs with disease severity or physical performance further. We therefore quantified miR-542-3p/5p and mitochondrial rRNA expression in RNA extracted from quadriceps muscle of patients with COPD and determined their association with physical performance. As miR-542-3p inhibits ribosomal protein synthesis its ability to inhibit protein synthesis was also determined in vitro. Both miR-542-3p expression and -5p expression were elevated in patients with COPD (5-fold P < 0.001) and the degree of elevation associated with impaired lung function (transfer capacity of the lung for CO in % and forced expiratory volume in 1 s in %) and physical performance (6-min walk distance in %). In COPD patients, the ratio of 12S rRNA to 16S rRNA was suppressed suggesting mitochondrial ribosomal stress and mitochondrial dysfunction and miR-542-3p/5p expression was inversely associated with mitochondrial gene expression and positively associated with p53 activity. miR-542-3p suppressed RPS23 expression and maximal protein synthesis in vitro. Our data show that miR-542-3p and -5p expression is elevated in COPD patients and may suppress physical performance at least in part by inhibiting mitochondrial and cytoplasmic ribosome synthesis and suppressing protein synthesis. NEW & NOTEWORTHY miR-542-3p and -5p are elevated in the quadriceps muscle of patients with chronic obstructive pulmonary disease (COPD) in proportion to the severity of their lung disease. These microRNAs inhibit mitochondrial and cytoplasmic protein synthesis suggesting that they contribute to impaired exercise performance in COPD.

2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Gulam Haji ◽  
◽  
Coen H. Wiegman ◽  
Charalambos Michaeloudes ◽  
Mehul S. Patel ◽  
...  

Abstract Background Mitochondrial damage and dysfunction have been reported in airway and quadriceps muscle cells of patients with chronic obstructive pulmonary disease (COPD). We determined the concomitance of mitochondrial dysfunction in these cells in COPD. Methods Bronchial biopsies were obtained from never- and ex-smoker volunteers and COPD patients (GOLD Grade 2) and quadriceps muscle biopsies from the same volunteers in addition to COPD patients at GOLD Grade 3/4 for measurement of mitochondrial function. Results Decreased mitochondrial membrane potential (ΔΨm), increased mitochondrial reactive oxygen species (mtROS) and decreased superoxide dismutase 2 (SOD2) levels were observed in mitochondria isolated from bronchial biopsies from Grade 2 patients compared to healthy never- and ex-smokers. There was a significant correlation between ΔΨm and FEV1 (% predicted), transfer factor of the lung for carbon monoxide (TLCOC % predicted), 6-min walk test and maximum oxygen consumption. In addition, ΔΨm was also associated with decreased expression levels of electron transport chain (ETC) complex proteins I and II. In quadriceps muscle of Grade 2 COPD patients, a significant increase in total ROS and mtROS was observed without changes in ΔΨm, SOD2 or ETC complex protein expression. However, quadriceps muscle of GOLD Grade 3/4 COPD patients showed an increased mtROS and decreased SOD2 and ETC complex proteins I, II, III and V expression. Conclusions Mitochondrial dysfunction in the airways, but not in quadriceps muscle, is associated with airflow obstruction and exercise capacity in Grade 2 COPD. Oxidative stress-induced mitochondrial dysfunction in the quadriceps may result from similar disease processes occurring in the lungs.


2018 ◽  
Vol 132 (14) ◽  
pp. 1615-1627 ◽  
Author(s):  
Mathew S. Eapen ◽  
Anudeep Kota ◽  
Howard Vindin ◽  
Kielan D. McAlinden ◽  
Dia Xenaki ◽  
...  

Increased airway smooth muscle (ASM) mass is observed in chronic obstructive pulmonary disease (COPD), which is correlated with disease severity and negatively affects lung function in these patients. Thus, there is clear unmet clinical need for finding new therapies which can target airway remodeling and disease progression in COPD. Apoptosis signal-regulating kinase 1 (ASK1) is a ubiquitously expressed mitogen-activated protein kinase (MAPK) kinase kinase (MAP3K) activated by various stress stimuli, including reactive oxygen species (ROS), tumor necrosis factor (TNF)-α, and lipopolysaccharide (LPS) and is known to regulate cell proliferation. ASM cells from COPD patients are hyperproliferative to mitogens in vitro. However, the role of ASK1 in ASM growth is not established. Here, we aim to determine the effects of ASK1 inhibition on ASM growth and pro-mitogenic signaling using ASM cells from COPD patients. We found greater expression of ASK1 in ASM bundles of COPD lung when compared with non-COPD. Pre-treatment of ASM cells with highly selective ASK1 inhibitor, TC ASK 10 resulted in a dose-dependent reduction in mitogen (FBS, PDGF, and EGF; 72 h)-induced ASM growth as measured by CyQUANT assay. Further, molecular targetting of ASK1 using siRNA in ASM cells prevented mitogen-induced cell growth. In addition, to anti-mitogenic potential, ASK1 inhibitor also prevented TGFβ1-induced migration of ASM cells in vitro. Immunoblotting revealed that anti-mitogenic effects are mediated by C-Jun N-terminal kinase (JNK) and p38MAP kinase-signaling pathways as evident by reduced phosphorylation of downstream effectors JNK1/2 and p38MAP kinases, respectively, with no effect on extracellular signal-regulated kinase (ERK) 1/2 (ERK1/2). Collectively, these findings establish the anti-mitogenic effect of ASK1 inhibition and identify a novel pathway that can be targetted to reduce or prevent excessive ASM mass in COPD.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yung-Che Chen ◽  
◽  
Ying-Huang Tsai ◽  
Chin-Chou Wang ◽  
Shih-Feng Liu ◽  
...  

AbstractWe hypothesized that epigenetics is a link between smoking/allergen exposures and the development of Asthma and chronic obstructive pulmonary disease (ACO). A total of 75 of 228 COPD patients were identified as ACO, which was independently associated with increased exacerbations. Microarray analysis identified 404 differentially methylated loci (DML) in ACO patients, and 6575 DML in those with rapid lung function decline in a discovery cohort. In the validation cohort, ACO patients had hypermethylated PDE9A (+ 30,088)/ZNF323 (− 296), and hypomethylated SEPT8 (− 47) genes as compared with either pure COPD patients or healthy non-smokers. Hypermethylated TIGIT (− 173) gene and hypomethylated CYSLTR1 (+ 348)/CCDC88C (+ 125,722)/ADORA2B (+ 1339) were associated with severe airflow limitation, while hypomethylated IFRD1 (− 515) gene with frequent exacerbation in all the COPD patients. Hypermethylated ZNF323 (− 296) / MPV17L (+ 194) and hypomethylated PTPRN2 (+ 10,000) genes were associated with rapid lung function decline. In vitro cigarette smoke extract and ovalbumin concurrent exposure resulted in specific DNA methylation changes of the MPV17L / ZNF323 genes, while 5-aza-2′-deoxycytidine treatment reversed promoter hypermethylation-mediated MPV17L under-expression accompanied with reduced apoptosis and decreased generation of reactive oxygen species. Aberrant DNA methylations may constitute a determinant for ACO, and provide a biomarker of airflow limitation, exacerbation, and lung function decline.


2018 ◽  
Vol 3 (1) ◽  
pp. 17
Author(s):  
Katayoun Samadi ◽  
Shahram Kharabian ◽  
Atefeh Abedini ◽  
Foroogh Mohammadi ◽  
Azam Adeli ◽  
...  

Background: Sarcopenia is defined as loss of muscle mass with attendant loss of muscle strength and physical function and is associated with advancing age. Inflammatory condition of chronic disease leads to more rapid progression of this syndrome, which may adversely affect quality of life. The aim of this study was to determine the relationship between chronic obstructive pulmonary disease (COPD) and sarcopenia.Methods: This study included 108 COPD patients who were treated in the pulmonary clinic at Masih Daneshvari Hospital. Patients were categorized into three groups based on Global Initiative for Obstructive Lung Disease criteria. Sarcopenic parameters including muscle mass, muscle strength, and physical performance were measured by Bioimpedance Analysis, hand grip dynamometer, and the Short Physical Performance Battery test, respectively. According to the European Working Group on Sarcopenia in Older People cutoff points and the definition of sarcopenic obesity, sarcopenic patients were diagnosed and categorized based on different COPD severity scores.Results: The relationship between sarcopenia and COPD grading, which was assessed using multiple regression models with adjustment of confounding factors, including age, chronic diseases, and smoking, was statistically insignificant. However, by using forced expiratory volume in 1 second (FEV1) or ratio of FEV1 to forced vital capacity in this model, the results were significant (P = 0.026). A positive linear correlation was observed between skeletal muscle index (SMI) and spirometric data, which was assessed by Spearman’s correlation test. By exploring the association between sarcopenia and obesity with the one-way analysis of variance test, sarcopenic patients represented to have the minimal spirometric measures. However, this difference was only significant for actual measurements.Conclusion: This study showed that sarcopenic COPD patients had smaller spirometric measurements and that sarcopenia and magnitude of SMI were positively correlated with obstruction severity.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Jing Mao ◽  
Ya Li ◽  
Suyun Li ◽  
Jiansheng Li ◽  
Yange Tian ◽  
...  

Background. Cell apoptosis is an important mechanism underlying skeletal muscle dysfunction in chronic obstructive pulmonary disease (COPD) patients, and mitochondrial dysfunction is recognized as a central aspect contributing to skeletal muscle deterioration. Bufei Jianpi granules have been confirmed effective for improving motor function in COPD patients, but the specific mechanism for this improved function remains unknown. This study explored the mechanisms by which Bufei Jianpi granules improve cell apoptosis and mitochondrial dysfunction in COPD. Methods. Sprague-Dawley rats were randomized into control, model, Bufei Jianpi, and aminophylline groups. A stable COPD rat model was induced with respective repeated cigarette smoke inhalation and intragastric bacterial infection, and rats were sacrificed after 20 weeks; the quadriceps muscle was harvested from each rat. Skeletal muscle mitochondria were extracted for measurements of mitochondrial membrane potential (MMP) and mitochondrial permeability transition pore openings (mPTPs). ATP levels were determined with a firefly luciferase-based ATP assay kit. The rates of cell apoptosis were determined by the transferase-mediated deoxyuridine triphosphate-biotin nick end labeling (TUNEL) method. Cyto C and caspase-3 mRNA and protein levels were measured by qPCR and western blotting. Results. ATP, MMP, and mPTPs were markedly decreased in COPD rats, while cell apoptosis, caspase-3, and Cyto C were increased (P<0.01). All aforementioned parameters were improved in treatment groups (P<0.05). ATP, MMP, and mPTPs were significantly higher in the Bufei Jianpi group than in the aminophylline group, while cell apoptosis, caspase-3, and Cyto C were lower (P<0.05). Conclusions. Bufei Jianpi granules can inhibit mitochondrial dysfunction and cell apoptosis in peripheral muscles, which might be the mechanism involved in improving skeletal muscle function in COPD patients.


Author(s):  
Jake R. Weeks ◽  
Karl J. Staples ◽  
C. Mirella Spalluto ◽  
Alastair Watson ◽  
Tom M. A. Wilkinson

Non-typeable Haemophilus influenzae (NTHi) is an ubiquitous commensal-turned-pathogen that colonises the respiratory mucosa in airways diseases including Chronic Obstructive Pulmonary Disease (COPD). COPD is a progressive inflammatory syndrome of the lungs, encompassing chronic bronchitis that is characterised by mucus hypersecretion and impaired mucociliary clearance and creates a static, protective, humid, and nutrient-rich environment, with dysregulated mucosal immunity; a favourable environment for NTHi colonisation. Several recent large COPD cohort studies have reported NTHi as a significant and recurrent aetiological pathogen in acute exacerbations of COPD. NTHi proliferation has been associated with increased hospitalisation, disease severity, morbidity and significant lung microbiome shifts. However, some cohorts with patients at different severities of COPD do not report that NTHi is a significant aetiological pathogen in their COPD patients, indicating other obligate pathogens including Moraxella catarrhalis, Streptococcus pneumoniae and Pseudomonas aeruginosa as the cause. NTHi is an ubiquitous organism across healthy non-smokers, healthy smokers and COPD patients from childhood to adulthood, but it currently remains unclear why NTHi becomes pathogenic in only some cohorts of COPD patients, and what behaviours, interactions and adaptations are driving this susceptibility. There is emerging evidence that biofilm-phase NTHi may play a significant role in COPD. NTHi displays many hallmarks of the biofilm lifestyle and expresses key biofilm formation-promoting genes. These include the autoinducer-mediated quorum sensing system, epithelial- and mucus-binding adhesins and expression of a protective, self-produced polymeric substance matrix. These NTHi biofilms exhibit extreme tolerance to antimicrobial treatments and the immune system as well as expressing synergistic interspecific interactions with other lung pathogens including S. pneumoniae and M. catarrhalis. Whilst the majority of our understanding surrounding NTHi as a biofilm arises from otitis media or in-vitro bacterial monoculture models, the role of NTHi biofilms in the COPD lung is now being studied. This review explores the evidence for the existence of NTHi biofilms and their impact in the COPD lung. Understanding the nature of chronic and recurrent NTHi infections in acute exacerbations of COPD could have important implications for clinical treatment and identification of novel bactericidal targets.


2022 ◽  
Vol 2022 ◽  
pp. 1-21
Author(s):  
Yiya Gu ◽  
Jinkun Chen ◽  
Qian Huang ◽  
Yuan Zhan ◽  
Ting Wang ◽  
...  

Extensive inflammation and apoptosis in structural cells of the lung are responsible for the progression and pathogenesis of chronic obstructive pulmonary disease (COPD). Myotubularin-related protein 14 (MTMR14) has been shown to participate in various biological processes, including apoptosis, inflammation, and autophagy. Nonetheless, the role of MTMR14 in COPD remains elusive. In the present study, we explored the expression of MTMR14 in human lung tissues and investigated the effects of overexpressed MTMR14 on in vitro and in vivo COPD models. Moreover, one of the possible mechanisms of MTMR14 alleviating COPD was explored based on mitochondrial function and mitophagy homeostasis. The results showed that MTMR14 expression was reduced in COPD patients’ lungs in comparison to control subjects. MTMR14 overexpression inhibited cigarette smoke extract-induced inflammation and apoptosis and improved mitochondrial function and mitophagy in vitro. Further verification was carried out in COPD model mice. MTMR14 overexpression inhibited lung inflammation and reduced levels of IL-6 and KC in bronchoalveolar lavage fluid, as well as prevented emphysema and a decline in lung function. Furthermore, MTMR14 overexpression improved mitochondrial function and mitophagy to a certain extent. Collectively, our data support the hypothesis that MTMR14 participates in the pathogenesis of COPD. Improving mitochondrial function and mitophagy homeostasis may be one of the mechanisms by which MTMR14 alleviates COPD and may potentially be a novel therapeutic target for COPD.


2020 ◽  
Vol 29 (2) ◽  
pp. 864-872
Author(s):  
Fernanda Borowsky da Rosa ◽  
Adriane Schmidt Pasqualoto ◽  
Catriona M. Steele ◽  
Renata Mancopes

Introduction The oral cavity and pharynx have a rich sensory system composed of specialized receptors. The integrity of oropharyngeal sensation is thought to be fundamental for safe and efficient swallowing. Chronic obstructive pulmonary disease (COPD) patients are at risk for oropharyngeal sensory impairment due to frequent use of inhaled medications and comorbidities including gastroesophageal reflux disease. Objective This study aimed to describe and compare oral and oropharyngeal sensory function measured using noninstrumental clinical methods in adults with COPD and healthy controls. Method Participants included 27 adults (18 men, nine women) with a diagnosis of COPD and a mean age of 66.56 years ( SD = 8.68). The control group comprised 11 healthy adults (five men, six women) with a mean age of 60.09 years ( SD = 11.57). Spirometry measures confirmed reduced functional expiratory volumes (% predicted) in the COPD patients compared to the control participants. All participants completed a case history interview and underwent clinical evaluation of oral and oropharyngeal sensation by a speech-language pathologist. The sensory evaluation explored the detection of tactile and temperature stimuli delivered by cotton swab to six locations in the oral cavity and two in the oropharynx as well as identification of the taste of stimuli administered in 5-ml boluses to the mouth. Analyses explored the frequencies of accurate responses regarding stimulus location, temperature and taste between groups, and between age groups (“≤ 65 years” and “> 65 years”) within the COPD cohort. Results We found significantly higher frequencies of reported use of inhaled medications ( p < .001) and xerostomia ( p = .003) in the COPD cohort. Oral cavity thermal sensation ( p = .009) was reduced in the COPD participants, and a significant age-related decline in gustatory sensation was found in the COPD group ( p = .018). Conclusion This study found that most of the measures of oral and oropharyngeal sensation remained intact in the COPD group. Oral thermal sensation was impaired in individuals with COPD, and reduced gustatory sensation was observed in the older COPD participants. Possible links between these results and the use of inhaled medication by individuals with COPD are discussed.


Sign in / Sign up

Export Citation Format

Share Document