scholarly journals Sarcopenia and a physiologically low respiratory quotient in patients with cirrhosis: a prospective controlled study

2013 ◽  
Vol 114 (5) ◽  
pp. 559-565 ◽  
Author(s):  
Cathy Glass ◽  
Peggy Hipskind ◽  
Cynthia Tsien ◽  
Steven K. Malin ◽  
Takhar Kasumov ◽  
...  

Patients with cirrhosis have increased gluconeogenesis and fatty acid oxidation that may contribute to a low respiratory quotient (RQ), and this may be linked to sarcopenia and metabolic decompensation when these patients are hospitalized. Therefore, we conducted a prospective study to measure RQ and its impact on skeletal muscle mass, survival, and related complications in hospitalized cirrhotic patients. Fasting RQ and resting energy expenditure (REE) were determined by indirect calorimetry in cirrhotic patients ( n = 25), and age, sex, and weight-matched healthy controls ( n = 25). Abdominal muscle area was quantified by computed tomography scanning. In cirrhotic patients we also examined the impact of RQ on mortality, repeat hospitalizations, and liver transplantation. Mean RQ in patients with cirrhosis (0.63 ± 0.05) was significantly lower ( P < 0.0001) than healthy matched controls (0.84 ± 0.06). Psoas muscle area in cirrhosis (24.0 ± 6.6 cm2) was significantly ( P < 0.001) lower than in controls (35.9 ± 9.5 cm2). RQ correlated with the reduction in psoas muscle area ( r2 = 0.41; P = 0.01). However, in patients with cirrhosis a reduced RQ did not predict short-term survival or risk of developing complications. When REE was normalized to psoas area, energy expenditure was significantly higher ( P < 0.001) in patients with cirrhosis (66.7 ± 17.8 kcal/cm2) compared with controls (47.7 ± 7.9 kcal/cm2). We conclude that hospitalized patients with cirrhosis have RQs well below the traditional lowest physiological value of 0.69, and this metabolic state is accompanied by reduced skeletal muscle area. Although low RQ does not predict short-term mortality in these patients, it may reflect a decompensated metabolic state that requires careful nutritional management with appropriate consideration for preservation of skeletal muscle mass.

2020 ◽  
Author(s):  
Masakuni Tateyama ◽  
Hideaki Naoe ◽  
Motohiko Tanaka ◽  
Kentaro Tanaka ◽  
Satoshi Narahara ◽  
...  

Abstract Background: Sarcopenia is a syndrome characterized by progressive and systemic decreases in skeletal muscle mass and muscle strength. The influence or prognosis of various liver diseases in this condition have been widely investigated, but little is known about whether sarcopenia and/or muscle mass loss are related to minimal hepatic encephalopathy (MHE).Methods: To clarify the relationship between MHE and sarcopenia and/or muscle mass loss in patients with liver cirrhosis.Methods: Ninety-nine patients with liver cirrhosis were enrolled. MHE was diagnosed by a neuropsychiatric test. Skeletal mass index (SMI) and Psoas muscle index (PMI) were calculated by dividing skeletal muscle area and psoas muscle area at the third lumbar vertebra by the square of height in meters, respectively, to evaluate muscle volume.Results: This study enrolled 99 patients (61 males, 38 females). MHE was detected in 48 cases (48.5%) and sarcopenia in 6 cases (6.1%). Patients were divided into two groups, with or without MHE. Comparing groups, no significant differences were seen in serum ammonia concentration or rate of sarcopenia. SMI was smaller in patients with MHE (46.4 cm2/m2) than in those without (51.2 cm2/m2, P = 0.027). Similarly, PMI was smaller in patients with MHE (4.24 cm2/m2) than in those without (5.53 cm2/m2, P = 0.003). Skeletal muscle volume, which is represented by SMI or PMI was a predictive factor related to MHE (SMI ≥ 50 cm2/m2; odds ratio 0.300, P = 0.002, PMI ≥ 4.3 cm2/m2; odds ratio 0.192, P = 0.001).Conclusions: Muscle mass loss was related to minimal hepatic encephalopathy, although sarcopenia was not. Measurement of muscle mass loss might be useful to predict MHE.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247140
Author(s):  
Takehiro Funamizu ◽  
Yuji Nagatomo ◽  
Mike Saji ◽  
Nobuo Iguchi ◽  
Hiroyuki Daida ◽  
...  

Background Acute decompensated heart failure (ADHF) is a growing healthcare burden with increasing prevalence and comorbidities due to progressive aging society. Accumulating evidence suggest that low skeletal muscle mass has a negative impact on clinical outcome in elderly adult population. We sought to determine the significance of psoas muscle area as a novel index of low skeletal muscle mass in elderly patients with ADHF. Methods In this single-center retrospective observational study, we reviewed consecutive 865 elderly participants (65 years or older) who were hospitalized for ADHF and 392 were available for analysis (79 years [74–85], 56% male). Cross-sectional areas of psoas muscle at the level of fourth lumbar vertebra were measured by computed tomography and normalized by the square of height to calculate psoas muscle index (PMI, cm2/m2). Results Dividing the patients by the gender-specific quartile value (2.47 cm2/m2 for male and 1.68 cm2/m2 for female), we defined low PMI as the lowest gender-based quartile of PMI. Multiple linear regression analysis revealed female sex, body mass index (BMI), and E/e’, but not left ventricular ejection fraction, were independently associated with PMI. Kaplan-Meier analysis showed low PMI was associated with higher rate of composite endpoint of all-cause death and ADHF re-hospitalization (P = 0.033). Cox proportional hazard model analysis identified low PMI, but not BMI, was an independent predictor of the composite endpoint (Hazard ratio: 1.52 [1.06–2.16], P = 0.024). Conclusions PMI predicted future clinical adverse events in elderly patients with ADHF. Further studies are needed to assess whether low skeletal muscle mass can be a potential therapeutic target to improve the outcome of ADHF.


2020 ◽  
Author(s):  
Masakuni Tateyama ◽  
Hideaki Naoe ◽  
Motohiko Tanaka ◽  
Kentaro Tanaka ◽  
Satoshi Narahara ◽  
...  

Abstract Background: Sarcopenia is a syndrome characterized by progressive and systemic decreases in skeletal muscle mass and muscle strength. The influence or prognosis of various liver diseases in this condition have been widely investigated, but little is known about whether sarcopenia and/or muscle mass loss are related to minimal hepatic encephalopathy (MHE). Methods: To clarify the relationship between MHE and sarcopenia and/or muscle mass loss in patients with liver cirrhosis. Methods: Ninety-nine patients with liver cirrhosis were enrolled. MHE was diagnosed by a neuropsychiatric test. Skeletal mass index (SMI) and Psoas muscle index (PMI) were calculated by dividing skeletal muscle area and psoas muscle area at the third lumbar vertebra by the square of height in meters, respectively, to evaluate muscle volume. Results: This study enrolled 99 patients (61 males, 38 females). MHE was detected in 48 cases (48.5%) and sarcopenia in 6 cases (6.1%). Patients were divided into two groups, with or without MHE. Comparing groups, no significant differences were seen in serum ammonia concentration or rate of sarcopenia. SMI was smaller in patients with MHE (46.4 cm 2 /m 2 ) than in those without (51.2 cm 2 /m 2 , P = 0.027). Similarly, PMI was smaller in patients with MHE (4.24 cm 2 /m 2 ) than in those without (5.53 cm 2 /m 2 , P = 0.003). Skeletal muscle volume, which is represented by SMI or PMI was a predictive factor related to MHE (SMI ≥ 50 cm 2 /m 2 ; odds ratio 0.300, P = 0.002, PMI ≥ 4.3 cm 2 /m 2 ; odds ratio 0.192, P = 0.001).Conclusions: Muscle mass loss was related to minimal hepatic encephalopathy, although sarcopenia was not. Measurement of muscle mass loss might be useful to predict MHE.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Masakuni Tateyama ◽  
Hideaki Naoe ◽  
Motohiko Tanaka ◽  
Kentaro Tanaka ◽  
Satoshi Narahara ◽  
...  

Abstract Background Sarcopenia is a syndrome characterized by progressive and systemic decreases in skeletal muscle mass and muscle strength. The influence or prognosis of various liver diseases in this condition have been widely investigated, but little is known about whether sarcopenia and/or muscle mass loss are related to minimal hepatic encephalopathy (MHE). Methods To clarify the relationship between MHE and sarcopenia and/or muscle mass loss in patients with liver cirrhosis. Methods Ninety-nine patients with liver cirrhosis were enrolled. MHE was diagnosed by a neuropsychiatric test. Skeletal mass index (SMI) and Psoas muscle index (PMI) were calculated by dividing skeletal muscle area and psoas muscle area at the third lumbar vertebra by the square of height in meters, respectively, to evaluate muscle volume. Results This study enrolled 99 patients (61 males, 38 females). MHE was detected in 48 cases (48.5%) and sarcopenia in 6 cases (6.1%). Patients were divided into two groups, with or without MHE. Comparing groups, no significant differences were seen in serum ammonia concentration or rate of sarcopenia. SMI was smaller in patients with MHE (46.4 cm2/m2) than in those without (51.2 cm2/m2, P = 0.027). Similarly, PMI was smaller in patients with MHE (4.24 cm2/m2) than in those without (5.53 cm2/m2, P = 0.003). Skeletal muscle volume, which is represented by SMI or PMI was a predictive factor related to MHE (SMI ≥ 50 cm2/m2; odds ratio 0.300, P = 0.002, PMI ≥ 4.3 cm2/m2; odds ratio 0.192, P = 0.001). Conclusions Muscle mass loss was related to minimal hepatic encephalopathy, although sarcopenia was not. Measurement of muscle mass loss might be useful to predict MHE.


2018 ◽  
Vol 64 (5) ◽  
pp. 564-569
Author(s):  
Yuriy Zharikov ◽  
Tatyana Zharikova ◽  
Vladimir Nikolenko

The objective of this review study was to analyze the relationship between skeletal muscle mass and postoperative short-term outcomes morbidity in patients with Klatskin tumor who underwent surgical treatment. Low index skeletal muscle mass had a negative impact factor on postoperative morbidity following resection of Klatskin tumor and should therefore be considered as preoperative risk assessment. The further study of body composition in oncological patients allowed revealing the group of patients with high probability of postoperative complications and this factor needed to be added to future models predictive scale of short-term outcomes with the aim of making the most rational preoperative treatment algorithm.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254844
Author(s):  
Joon-Kee Yoon ◽  
Jeon Yeob Jang ◽  
Young-Sil An ◽  
Su Jin Lee

Purpose To evaluate the feasibility of using skeletal muscle mass (SMM) at C3 (C3 SMM) as a diagnostic marker for sarcopenia in head and neck cancer (HNC) patients. Methods We evaluated 165 HNC patients and 42 healthy adults who underwent 18F-fluorodeoxyglucose positron emission tomography/computed tomography scans. The paravertebral muscle area at C3 and skeletal muscle area at L3 were measured by CT. Pearson’s correlation was used to assess the relationship between L3 and C3 SMMs. The prediction model for L3 SMM was developed by multiple linear regression. Then the correlation and the agreement between actual and predicted L3 SMMs were assessed. To evaluate the diagnostic value of C3 SMM for sarcopenia, the receiver operating characteristics (ROC) curves were analyzed. Results Of the 165 HNC patients, 61 (37.0%) were sarcopenic and 104 (63.0%) were non-sarcopenic. A very strong correlation was found between L3 SMM and C3 SMM in both healthy adults (r = 0.864) and non-sarcopenic patients (r = 0.876), while a fair association was found in sarcopenic patients (r = 0.381). Prediction model showed a very strong correlation between actual SMM and predicted L3 SMM in both non-sarcopenic patients and healthy adults (r > 0.9), whereas the relationship was moderate in sarcopenic patients (r = 0.7633). The agreement between two measurements was good for healthy subjects and non-sarcopenic patients, while it was poor for sarcopenic patients. On ROC analysis, predicted L3 SMM showed poor diagnostic accuracy for sarcopenia. Conclusions A correlation between L3 and C3 SMMs was weak in sarcopenic patients. A prediction model also showed a poor diagnostic accuracy. Therefore, C3 SMM may not be a strong predictor for L3 SMM in sarcopenic patients with HNC.


2019 ◽  
Vol 8 (5) ◽  
pp. 667 ◽  
Author(s):  
Eun Kyung Choe ◽  
Young Lee ◽  
Hae Yeon Kang ◽  
Seung Ho Choi ◽  
Joo Sung Kim

A relationship between lung function and sarcopenia has been suggested. This study aimed to evaluate the association between lung function and abdominal skeletal muscle mass, as measured by computed tomography (CT). The clinical records of 1907 subjects (1406 males, mean age 53.1 ± 9.2 years), who underwent routine health check-ups, including spirometry and abdominal CT, were retrospectively reviewed. The CT-measured skeletal muscle index (SMICT, cm2/(kg/m2) was defined as the skeletal muscle area of the third lumbar vertebrae (L3) level that is normalized by the body mass index. The mean values of forced vital capacity (FVC) and forced expiratory volume in one second (FEV1) gradually increased as the SMICT quartiles increased (all p for trend < 0.05). The proportions of subjects with less than 80% of the predicted FVC (%) and predicted FEV1 (%) significantly decreased as the SMICT quartiles increased (all p for trend < 0.05). The β regression coefficients for FVC and FEV1 significantly increased as the SMICT quartiles increased after adjusting for other confounding variables (p for trend < 0.05). This study showed that abdominal muscle mass, which was precisely measured by CT, independently affected lung function proportionally after adjusting for confounding factors in relatively healthy adults.


2020 ◽  
Vol 9 (10) ◽  
pp. 3158
Author(s):  
Michał Kukla ◽  
Lubomir Skladany ◽  
Tomasz Menżyk ◽  
Aleksandra Derra ◽  
Dominika Stygar ◽  
...  

Background: Sarcopenia is a prevalent muscle abnormality characterized by progressive and generalized loss of skeletal muscle mass and strength, common among patients with decompensated advanced chronic liver disease (dACLD). Irisin is a recently identified myokine, which is mainly expressed and secreted by skeletal muscle. Pointing to the essential role of irisin in metabolic regulation and energy expenditure we hypothesize that it plays an important role in cirrhosis development and progression. Aim: To assess irisin serum levels in patients with dACLD, with different cirrhosis stage and etiology. To analyze relationship between sarcopenia and irisin serum levels. Methods: Serum irisin concentrations were measured with commercially available ELISA kits in 88 cirrhotic patients. Recorded parameters of muscle mass were hand-grip strength (HGS), mid-arm muscle circumference (MAC), and transversal psoas muscle index (TPMI). Results: There was no difference in serum irisin levels between cirrhotic patients with different Child-Pugh (CTP) and model of end-stage liver disease (MELD) score, and those with and without ascites. The Liver Frailty Index (LFI) was significantly higher in patients with more advanced liver disease according to CTP and MELD. There was no association between serum irisin level with MAC (r = 0.04, p = 0.74) nor with TPMI (r = 0.20, p = 0.06). We observed significant negative correlation between serum irisin level and age (r = −0.35, p < 0.001). Conclusions: Serum irisin levels did not correlate with sarcopenia. There was no difference in serum irisin levels between cirrhotic patients with and without diabetes. There was no difference in serum irisin levels among patients with more severe dACLD, although we observed significant LFI increase among patients with more advanced liver disease.


Sign in / Sign up

Export Citation Format

Share Document