Exercise training alleviates MCT1 and MCT4 reductions in heart and skeletal muscles of STZ-induced diabetic rats

2003 ◽  
Vol 94 (6) ◽  
pp. 2433-2438 ◽  
Author(s):  
Taisuke Enoki ◽  
Yuko Yoshida ◽  
Hideo Hatta ◽  
Arend Bonen

We compared the changes in monocarboxylate transporter 1 (MCT1) and 4 (MCT4) proteins in heart and skeletal muscles in sedentary control and streptozotocin (STZ)-induced diabetic rats (3 wk) and in trained (3 wk) control and STZ-induced diabetic animals. In nondiabetic animals, training increased MCT1 in the plantaris (+51%; P < 0.01) but not in the soleus (+9%) or the heart (+14%). MCT4 was increased in the plantaris (+48%; P < 0.01) but not in the soleus muscles of trained nondiabetic animals. In sedentary diabetic animals, MCT1 was reduced in the heart (−30%), and in the plantaris (−31%; P < 0.01) and soleus (−26%) muscles. MCT4 content was also reduced in sedentary diabetic animals in the plantaris (−52%; P < 0.01) and soleus (−25%) muscles. In contrast, in trained diabetic animals, MCT1 and MCT4 in heart and/or muscle were similar to those of sedentary, nondiabetic animals ( P > 0.05) but were markedly greater than in the sedentary diabetic animals [MCT1: plantaris +63%, soleus +51%, heart +51% ( P > 0.05); MCT4: plantaris +107%, soleus +17% ( P > 0.05)]. These studies have shown that 1) with STZ-induced diabetes, MCT1 and MCT4 are reduced in skeletal muscle and/or the heart and 2) exercise training alleviated these diabetes-induced reductions.

1985 ◽  
Vol 249 (4) ◽  
pp. E360-E365 ◽  
Author(s):  
E. G. Noble ◽  
C. D. Ianuzzo

Muscle homogenates representing slow-twitch oxidative, fast-twitch oxidative-glycolytic, fast-twitch glycolytic, and mixed fiber types were prepared from normal, diabetic, and insulin-treated diabetic rats. Diabetes was induced by injection of 80 mg . kg-1 of streptozotocin. The activities of citrate synthase, succinate dehydrogenase, and 3-hydroxyacyl-CoA dehydrogenase were employed as markers of oxidative potential, whereas phosphorylase, hexokinase, and phosphofructokinase activities were used as an indication of glycolytic capacity. Diabetes was associated with a general decrement in the activity of oxidative marker enzymes for all fiber types except the fast-twitch glycolytic fiber. In contrast, the fast-twitch glycolytic fibers demonstrated the greatest decline in glycolytic enzymatic activity. Insulin-treated animals, either trained or untrained, exhibited enzyme activities similar to their normal counterparts. Exercise training of diabetic rats mimicked the effect of insulin treatment and caused a near normalization of the activity of the marker enzymes. These findings suggest that the enzymatic potential of all skeletal muscle fiber types of diabetic rats may be normalized by exercise training even in the absence of significant amounts of insulin.


1988 ◽  
Vol 65 (2) ◽  
pp. 844-851 ◽  
Author(s):  
L. J. Goodyear ◽  
M. F. Hirshman ◽  
S. M. Knutson ◽  
E. D. Horton ◽  
E. S. Horton

The effect of 8-wk of treadmill training on plasma glucose, insulin, and lipid concentrations, oral glucose tolerance, and glucose uptake in the perfused hindquarter of normal and streptozocin-treated, diabetic Sprague-Dawley rats was studied. Diabetic rats with initial plasma glucose concentrations of 200-450 mg/dl and control rats were divided into trained and sedentary subgroups. Training resulted in lower plasma free fatty acid concentrations and increased triceps muscle citrate synthase activity in both the control and diabetic rats; triglyceride concentrations were lowered by training only in the diabetic animals. Oral glucose tolerance and both basal and insulin-stimulated glucose uptake in hindquarter skeletal muscle were impaired in the diabetic rats, and plasma glucose concentrations (measured weekly) gradually increased during the experiment. Training did not improve the hyperglycemia, impaired glucose tolerance, or decreased skeletal muscle glucose uptake in the diabetic rats, nor did it alter these parameters in the normal control animals. In considering our results and those of previous studies in diabetic rats, we propose that exercise training may improve glucose homeostasis in animals with milder degrees of diabetes but fails to cause improvement in the more severely insulin-deficient, diabetic rat.


1999 ◽  
Vol 277 (4) ◽  
pp. E685-E692 ◽  
Author(s):  
Yolanda B. Lombardo ◽  
Cynthia Serdikoff ◽  
Manikkavasagar Thamotharan ◽  
Harbhajan S. Paul ◽  
Siamak A. Adibi

Rat cardiac and skeletal muscles, which have been used as model tissues for studies of regulation of branched-chain α-keto acid (BCKA) oxidation, vary greatly in the activity state of their BCKA dehydrogenase. In the present experiment, we have investigated whether they also vary in response of their BCKA dehydrogenase to a metabolic alteration such as diabetes and, if so, to investigate the mechanism that underlies the difference. Diabetes was produced by depriving streptozotocin-treated rats of insulin administration for 96 h. The investigation of BCKA dehydrogenase in the skeletal muscle (gastrocnemius) showed that diabetes 1) increased its activity, 2) increased the protein and gene expressions of all of its subunits (E1α, E1β, E2), 3) increased its activity state, 4) decreased the rate of its inactivation, and 5) decreased the protein expression of its associated kinase (BCKAD kinase) without affecting its gene expression. In sharp contrast, the investigation of BCKA dehydrogenase in the cardiac muscle showed that diabetes 1) decreased its activity, 2) had no effect on either protein or gene expression of any of its subunits, 3) decreased its activity state, 4) increased its rate of inactivation, and 5) increased both the protein and gene expressions of its associated kinase. In conclusion, our data suggest that, in diabetes, the protein expression of BCKAD kinase is downregulated posttranscriptionally in the skeletal muscle, whereas it is upregulated pretranslationally in the cardiac muscle, causing inverse alterations of BCKA dehydrogenase activity in these muscles.


1999 ◽  
Vol 87 (5) ◽  
pp. 1713-1718 ◽  
Author(s):  
George A. Brooks ◽  
Marcia A. Brown ◽  
C. E. Butz ◽  
James P. Sicurello ◽  
Hervé Dubouchaud

To evaluate the potential role of monocarboxylate transporter-1 (MCT1) in tissue lactate oxidation, isolated rat subsarcolemmal and interfibrillar cardiac and skeletal muscle mitochondria were probed with an antibody to MCT1. Western blots indicated presence of MCT1 in sarcolemmal membranes and in subsarcolemmal and interfibrillar mitochondria. Minimal cross-contamination of mitochondria by cell membrane fragments was verified by probing for the sarcolemmal protein GLUT-1. In agreement, immunolabeling and electron microscopy showed mitochondrial MCT1 in situ. Along with lactic dehydrogenase, the presence of MCT1 in striated muscle mitochondria permits mitochondrial lactate oxidation and facilitates function of the “intracellular lactate shuttle.”


1998 ◽  
Vol 274 (1) ◽  
pp. E102-E107 ◽  
Author(s):  
A. Bonen ◽  
K. J. A. McCullagh ◽  
C. T. Putman ◽  
E. Hultman ◽  
N. L. Jones ◽  
...  

We examined the effects of increasing a known lactate transporter protein, monocarboxylate transporter 1 (MCT1), on lactate extrusion from human skeletal muscle during exercise. Before and after short-term bicycle ergometry training [2 h/day, 7 days at 65% maximal oxygen consumption (V˙o 2 max)], subjects ( n = 7) completed a continuous bicycle ergometer ride at 30%V˙o 2 max (15 min), 60%V˙o 2 max (15 min), and 75% V˙o 2 max (15 min). Muscle biopsy samples (vastus lateralis) and arterial and femoral venous blood samples were obtained before exercise and at the end of each workload. After 7 days of training the MCT1 content in muscle was increased (+18%; P < 0.05). The concentrations of both muscle lactate and femoral venous lactate were reduced during exercise ( P < 0.05) that was performed after training. High correlations were observed between muscle lactate and venous lactate before training ( r = 0.92, P < 0.05) and after training ( r = 0.85, P < 0.05), but the slopes of the regression lines between these variables differed markedly. Before training, the slope was 0.12 ± 0.01 mM lactate ⋅ mmol lactate−1 ⋅ kg muscle dry wt−1, and this was increased by 33% after training to 0.18 ± 0.02 mM lactate ⋅ mmol lactate−1 ⋅ kg muscle dry wt−1. This indicated that after training the femoral venous lactate concentrations were increased for a given amount of muscle lactate. These results suggest that lactate extrusion from exercising muscles is increased after training, and this may be associated with the increase in skeletal muscle MCT1.


2003 ◽  
Vol 284 (5) ◽  
pp. H1668-H1678 ◽  
Author(s):  
Pamela G. Lloyd ◽  
Barry M. Prior ◽  
Hsiao T. Yang ◽  
Ronald L. Terjung

Angiogenesis occurs in skeletal muscle in response to exercise training. To gain insight into the regulation of this process, we evaluated the mRNA expression of factors implicated in angiogenesis over the course of a training program. We studied sedentary control ( n = 17) rats and both sedentary ( n = 18) and exercise-trained ( n = 48) rats with bilateral femoral artery ligation. Training consisted of treadmill exercise (4 times/day, 1–24 days). Basal mRNA expression in sedentary control muscle was inversely related to muscle vascularity. Angiogenesis was histologically evident in trained white gastrocnemius muscle by day 12. Training produced initial three- to sixfold increases in VEGF, VEGF receptors (KDR and Flt), the angiopoietin receptor (Tie-2), and endothelial nitric oxide synthase mRNA, which dissipated before the increase in capillarity, and a substantial (30- to 50-fold) but transient upregulation of monocyte chemoattractant protein 1 mRNA. These results emphasize the importance of early events in regulating angiogenesis. However, we observed a sustained elevation of the angiopoietin 2-to-angiopoietin 1 ratio, suggesting continued vascular destabilization. The response to exercise was (in general) tempered in high-oxidative muscles. These findings place importance on cellular events coupled to the onset of angiogenesis.


1997 ◽  
Vol 82 (3) ◽  
pp. 828-834 ◽  
Author(s):  
Brett A. Osborn ◽  
June T. Daar ◽  
Richard A. Laddaga ◽  
Fred D. Romano ◽  
Dennis J. Paulson

Osborn, Brett A., June T. Daar, Richard A. Laddaga, Fred D. Romano, and Dennis J. Paulson. Exercise training increases sarcolemmal GLUT-4 protein and mRNA content in diabetic heart. J. Appl. Physiol. 82(3): 828–834, 1997.—This study determined whether dynamic exercise training of diabetic rats would increase the expression of the GLUT-4 glucose transport protein in prepared cardiac sarcolemmal membranes. Four groups were compared: sedentary control, sedentary diabetic, trained control, and trained diabetic. Diabetes was induced by intravenous streptozotocin (60 mg/kg). Trained control and diabetic rats were run on a treadmill for 60 min, 27 m/min, 10% grade, 6 days/wk for 10 wk. Sarcolemmal membranes were isolated by using differential centrifugation, and the activity of sarcolemmal K+- p-nitrophenylphosphatase ( pNPPase; an indicator of Na+-K+-adenosinetriphosphatase activity) was quantified. Hearts from the sedentary diabetic group exhibited a significant depression of sarcolemmal pNPPase activity. Exercise training did not significantly alter pNPPase activity. Sedentary diabetic rats exhibited an 84 and 58% decrease in GLUT-4 protein and mRNA, respectively, relative to control rats. In the trained diabetic animals, sarcolemmal GLUT-4 protein levels were only reduced by 50% relative to control values, whereas GLUT-4 mRNA were returned to control levels. The increase in myocardial sarcolemmal GLUT-4 may be beneficial to the diabetic heart by enhancing myocardial glucose oxidation and cardiac performance


Author(s):  
Jun-Won Heo ◽  
Su-Zi Yoo ◽  
Mi-Hyun No ◽  
Dong-Ho Park ◽  
Ju-Hee Kang ◽  
...  

Obesity is characterized by the induction of skeletal muscle remodeling and mitochondria-mediated apoptosis. Exercise has been reported as a positive regulator of skeletal muscle remodeling and apoptosis. However, the effects of exercise on skeletal muscle remodeling and mitochondria-mediated apoptosis in obese skeletal muscles have not been clearly elucidated. Four-week-old C57BL/6 mice were randomly assigned into four groups: control (CON), control plus exercise (CON + EX), high-fat diet (HFD), and HFD plus exercise groups (HFD + EX). After obesity was induced by 20 weeks of 60% HFD feeding, treadmill exercise was performed for 12 weeks. Exercise ameliorated the obesity-induced increase in extramyocyte space and a decrease in the cross-sectional area of the skeletal muscle. In addition, it protected against increases in mitochondria-mediated apoptosis in obese skeletal muscles. These results suggest that exercise as a protective intervention plays an important role in regulating skeletal muscle structure and apoptosis in obese skeletal muscles.


Sign in / Sign up

Export Citation Format

Share Document