Short-term training increases human muscle MCT1 and femoral venous lactate in relation to muscle lactate

1998 ◽  
Vol 274 (1) ◽  
pp. E102-E107 ◽  
Author(s):  
A. Bonen ◽  
K. J. A. McCullagh ◽  
C. T. Putman ◽  
E. Hultman ◽  
N. L. Jones ◽  
...  

We examined the effects of increasing a known lactate transporter protein, monocarboxylate transporter 1 (MCT1), on lactate extrusion from human skeletal muscle during exercise. Before and after short-term bicycle ergometry training [2 h/day, 7 days at 65% maximal oxygen consumption (V˙o 2 max)], subjects ( n = 7) completed a continuous bicycle ergometer ride at 30%V˙o 2 max (15 min), 60%V˙o 2 max (15 min), and 75% V˙o 2 max (15 min). Muscle biopsy samples (vastus lateralis) and arterial and femoral venous blood samples were obtained before exercise and at the end of each workload. After 7 days of training the MCT1 content in muscle was increased (+18%; P < 0.05). The concentrations of both muscle lactate and femoral venous lactate were reduced during exercise ( P < 0.05) that was performed after training. High correlations were observed between muscle lactate and venous lactate before training ( r = 0.92, P < 0.05) and after training ( r = 0.85, P < 0.05), but the slopes of the regression lines between these variables differed markedly. Before training, the slope was 0.12 ± 0.01 mM lactate ⋅ mmol lactate−1 ⋅ kg muscle dry wt−1, and this was increased by 33% after training to 0.18 ± 0.02 mM lactate ⋅ mmol lactate−1 ⋅ kg muscle dry wt−1. This indicated that after training the femoral venous lactate concentrations were increased for a given amount of muscle lactate. These results suggest that lactate extrusion from exercising muscles is increased after training, and this may be associated with the increase in skeletal muscle MCT1.

1995 ◽  
Vol 20 (1) ◽  
pp. 89-101 ◽  
Author(s):  
Marcel R. Boulay ◽  
Olivier Serresse ◽  
Germain Thériault ◽  
Jean-Aimé Simoneau ◽  
Claude Bouchard ◽  
...  

This study compared the effects of 3 short-term maximal exercise tests lasting 10, 30, and 90 sec upon blood volume, plasma electrolytes, glucose, glycerol, lactate and skeletal muscle ATP, PC, glycogen, and lactate concentrations. Seven sedentary male subjects were recruited and 5 of them were randomly assigned to each of the 3 protocols. The tests were performed on a modified ergocycle at workloads of 0.9, 0.075, and 0.05 kp∙kg−1 body mass, respectively. Muscle biopsies were taken from the vastus lateralis before and immediately after each exercise. Venous blood samples were collected before, immediately after, and during the recovery (5, 20, 60, and 120 min). Plasma volume decreased during the 30- and 90-sec tests and was increased in all tests after 60 min of recovery. Plasma K+ increased during all tests and returned to normal values 5 min postexercise, except after the 90-sec test where it fell below resting values. Plasma Na+ and Cl− were unaffected. Blood lactate increased in all tests, glucose increased after the 90-sec test, and glycerol increased after the 30- and 90-sec tests. All 3 tests brought relatively similar changes in muscle ATP, PC, and glycogen while muscle lactate changes were related to exercise duration. These results suggest that a normal hydration status is important for a subject undergoing short training bouts, and that high-intensity tests of short duration do not require a special nutritional regimen to enhance glycogen reserves. Key words: skeletal muscle, hemoconcentration, hypervolemia, hyperkalemia


1998 ◽  
Vol 84 (3) ◽  
pp. 987-994 ◽  
Author(s):  
Steven K. Baker ◽  
Karl J. A. McCullagh ◽  
Arend Bonen

We investigated the effects of 3 wk of moderate- (21 m/min, 8% grade) and highintensity treadmill training (31 m/min, 15% grade) on 1) monocarboxylate transporter 1 (MCT-1) content in rat hindlimb muscles and the heart and 2) lactate uptake in isolated soleus (Sol) muscles and perfused hearts. In the moderately trained group MCT-1 was not increased in any of the muscles [Sol, extensor digitorum longus (EDL), and red (RG) and white gastrocnemius (WG)] ( P > 0.05). Similarly, lactate uptake in Sol strips was also not increased ( P > 0.05). In contrast, in the heart, MCT-1 (+36%, P < 0.05) and lactate uptake (+72%, P < 0.05) were increased with moderate training. In the highly trained group, MCT-1 (+70%, P < 0.05) and lactate uptake (+79%, P < 0.05) were increased in Sol. MCT-1 was also increased in RG (+94%, P < 0.05) but not in WG and EDL ( P > 0.05). In the highly trained group, heart MCT-1 (+44%, P < 0.05) and lactate uptake (+173%, P < 0.05) were increased. In conclusion, it has been shown that 1) in both heart and skeletal muscle lactate uptake is increased only when MCT-1 is increased; 2) training-induced increases in MCT-1 occurred at a lower training intensity in the heart than in skeletal muscle; 3) in the heart, lactate uptake was increased much more after high-intensity training than after moderate-intensity training, despite similar increases in heart MCT-1 with these two training intensities; and 4) the increases in MCT-1 occurred independently of any changes in the heart’s oxidative capacity (as measured by citrate synthase activity).


2007 ◽  
Vol 292 (4) ◽  
pp. R1594-R1602 ◽  
Author(s):  
Magni Mohr ◽  
Peter Krustrup ◽  
Jens Jung Nielsen ◽  
Lars Nybo ◽  
Martin Krøyer Rasmussen ◽  
...  

This study examined the effect of two different intense exercise training regimens on skeletal muscle ion transport systems, performance, and metabolic response to exercise. Thirteen subjects performed either sprint training [ST; 6-s sprints ( n = 6)], or speed endurance training [SET; 30-s runs ∼130% V̇o2 max, n = 7]. Training in the SET group provoked higher ( P < 0.05) plasma K+ levels and muscle lactate/H+ accumulation. Only in the SET group was the amount of the Na+/H+ exchanger isoform 1 (31%) and Na+-K+-ATPase isoform α2 (68%) elevated ( P < 0.05) after training. Both groups had higher ( P < 0.05) levels of Na+-K+-ATPase β1-isoform and monocarboxylate transporter 1 (MCT1), but no change in MCT4 and Na+-K+-ATPase α1-isoform. Both groups had greater ( P < 0.05) accumulation of lactate during exhaustive exercise and higher ( P < 0.05) rates of muscle lactate decrease after exercise. The ST group improved ( P < 0.05) sprint performance, whereas the SET group elevated ( P < 0.05) performance during exhaustive continuous treadmill running. Improvement in the Yo-Yo intermittent recovery test was larger ( P < 0.05) in the SET than ST group (29% vs. 10%). Only the SET group had a decrease ( P < 0.05) in fatigue index during a repeated sprint test. In conclusion, turnover of lactate/H+ and K+ in muscle during exercise does affect the adaptations of some but not all related muscle ion transport proteins with training. Adaptations with training do have an effect on the metabolic response to exercise and specific improvement in work capacity.


1995 ◽  
Vol 269 (3) ◽  
pp. E458-E468 ◽  
Author(s):  
C. T. Putman ◽  
N. L. Jones ◽  
L. C. Lands ◽  
T. M. Bragg ◽  
M. G. Hollidge-Horvat ◽  
...  

The regulation of the active form of pyruvate dehydrogenase (PDHa) and related metabolic events were examined in human skeletal muscle during repeated bouts of maximum exercise. Seven subjects completed three consecutive 30-s bouts of maximum isokinetic cycling, separated by 4 min of recovery. Biopsies of the vastus lateralis were taken before and immediately after each bout. PDHa increased from 0.45 +/- 0.15 to 2.96 +/- 0.38, 1.10 +/- 0.11 to 2.91 +/- 0.11, and 1.28 +/- 0.18 to 2.82 +/- 0.32 mmol.min-1.kg wet wt-1 during bouts 1, 2, and 3, respectively. Glycolytic flux was 13-fold greater than PDHa in bouts 1 and 2 and 4-fold greater during bout 3. This discrepancy between the rate of pyruvate production and oxidation resulted in substantial lactate accumulation to 89.5 +/- 11.6 in bout 1, 130.8 +/- 13.8 in bout 2, and 106.6 +/- 10.1 mmol/kg dry wt in bout 3. These events coincided with an increase in the mitochondrial oxidation state, as reflected by a fall in mitochondrial NADH/NAD, indicating that muscle lactate production during exercise was not an O2-dependent process in our subjects. During exercise the primary factor regulating PDHa transformation was probably intracellular Ca2+. In contrast, the primary regulatory factors causing greater PDHa during recovery were lower ATP/ADP and NADH/NAD and increased concentrations of pyruvate and H+. Greater PDHa during recovery facilitated continued oxidation of the lactate load between exercise bouts.


2003 ◽  
Vol 94 (6) ◽  
pp. 2433-2438 ◽  
Author(s):  
Taisuke Enoki ◽  
Yuko Yoshida ◽  
Hideo Hatta ◽  
Arend Bonen

We compared the changes in monocarboxylate transporter 1 (MCT1) and 4 (MCT4) proteins in heart and skeletal muscles in sedentary control and streptozotocin (STZ)-induced diabetic rats (3 wk) and in trained (3 wk) control and STZ-induced diabetic animals. In nondiabetic animals, training increased MCT1 in the plantaris (+51%; P < 0.01) but not in the soleus (+9%) or the heart (+14%). MCT4 was increased in the plantaris (+48%; P < 0.01) but not in the soleus muscles of trained nondiabetic animals. In sedentary diabetic animals, MCT1 was reduced in the heart (−30%), and in the plantaris (−31%; P < 0.01) and soleus (−26%) muscles. MCT4 content was also reduced in sedentary diabetic animals in the plantaris (−52%; P < 0.01) and soleus (−25%) muscles. In contrast, in trained diabetic animals, MCT1 and MCT4 in heart and/or muscle were similar to those of sedentary, nondiabetic animals ( P > 0.05) but were markedly greater than in the sedentary diabetic animals [MCT1: plantaris +63%, soleus +51%, heart +51% ( P > 0.05); MCT4: plantaris +107%, soleus +17% ( P > 0.05)]. These studies have shown that 1) with STZ-induced diabetes, MCT1 and MCT4 are reduced in skeletal muscle and/or the heart and 2) exercise training alleviated these diabetes-induced reductions.


Author(s):  
Geoffrey Warnier ◽  
Estelle De Groote ◽  
Florian A. Britto ◽  
Ophélie Delcorte ◽  
Joshua P. Nederveen ◽  
...  

Purpose: To investigate exosome-like vesicle (ELV) plasma concentrations and markers of multivesicular body (MVB) biogenesis in skeletal muscle in response to acute exercise. Methods: Seventeen healthy (BMI: 23.5±0.5kg·m-2) and fifteen prediabetic (BMI: 27.3±1.2kg·m-2) men were randomly assigned to two groups performing an acute cycling bout in normoxia or hypoxia (FiO2 14.0%). Venous blood samples were taken before (T0), during (T30) and after (T60) exercise and biopsies from m. vastus lateralis were collected before and after exercise. Plasma ELVs were isolated by size exclusion chromatography, counted by nanoparticle tracking analysis (NTA), and characterized according to international standards, followed by expression analyses of canonical ELV markers in skeletal muscle. Results: In the healthy normoxic group, the total number of particles in the plasma increased during exercise from T0 to T30 (+313%) followed by a decrease from T30 to T60 (-53%). In the same group, an increase in TSG101, CD81 and HSP60 protein expression was measured after exercise in plasma ELVs; however, in the prediabetic group, the total number of particles in the plasma was not affected by exercise. The mRNA content of TSG101, ALIX and CD9 were upregulated in skeletal muscle after exercise in normoxia; whereas, CD9 and CD81 were downregulated in hypoxia. Conclusions: ELV plasma abundance increased in response to acute aerobic exercise in healthy subjects in normoxia, but not in prediabetic subjects, nor in hypoxia. Skeletal muscle analyses suggested that this tissue did not likely play a major role of the exercise-induced increase in circulating ELVs.


1998 ◽  
Vol 275 (4) ◽  
pp. R1192-R1201 ◽  
Author(s):  
George A. Brooks ◽  
Eugene E. Wolfel ◽  
Gail E. Butterfield ◽  
Allen Cymerman ◽  
Amy C. Roberts ◽  
...  

We evaluated the hypotheses that on acute exposure to hypobaric hypoxia, sympathetic stimulation leads to augmented muscle lactate production and circulating [lactate] through a β-adrenergic mechanism and that β-adrenergic adaptation to chronic hypoxia is responsible for the blunted exercise lactate response after acclimatization to altitude. Five control and 6 β-blocked men were studied during rest and exercise at sea level (SL), on acute exposure to 4,300 m (A1), and after a 3-wk sojourn at altitude (A2). Exercise was by leg cycling at 49% of SL peak O2 consumption (V˙o 2 peak) (65% of altitude V˙o 2 peak or 87 ± 2.6 W); β-blockade was by propranolol (80 mg 3× daily), femoral arterial and venous blood was sampled; leg blood flow (Q˙) was measured by thermodilution, leg lactate net release [L˙ = (2) (1-leg Q) venous-arterial concentrationL] was calculated, and vastus lateralis needle biopsies were obtained. Muscle [lactate] increased with exercise and acute altitude exposure but regressed to SL values with acclimatization; β-blockade had no effect on muscle [lactate]. Arterial [lactate] rose during exercise at SL (0.9 ± 0.1 to 1.5 ± 0.3 mM); exercise at A1 produced the greatest arterial [lactate] (4.4 ± 0.8 mM), and exercise at A2 an intermediate response (2.1 ± 0.6 mM). β-Blockade reduced circulating [lactate] ∼45% during exercise under all altitude conditions. L˙ increased transiently at exercise onset but then declined over time under all conditions. Blood and muscle “lactate paradoxes” occurred independent of β-adrenergic influences, and the hypotheses relating the blood lactate response at altitude to β-adrenergic mechanisms are rejected. During exercise at altitude, arterial [lactate] is determined by factors in addition to hypoxemia, circulating epinephrine, and net lactate release from active muscle beds.


1978 ◽  
Vol 45 (6) ◽  
pp. 852-857 ◽  
Author(s):  
P. D. Gollnick ◽  
J. Karlsson ◽  
K. Piehl ◽  
B. Saltin

Experiments were conducted to examine the conversions of phosphorylase b to phosphorylase a in human skeletal muscle during bicycle exercise or isometric contractions. Muscle biopsies were obtained from the vastus lateralis with the needle technique at rest and either during or immediately after activity and frozen in liquid nitrogen within 2--4 s. Total phosphorylase and phosphorylase a activities were differentiated by measurement in the presence and absence of AMP, respectively. At rest 8.5% of the total phosphorylase activity existed in the a form. Little or no change in the percent of phosphorylase in the a form occurred during voluntary dynamic or static muscular activity that produced muscle lactate concentrations in excess of 18 mmol.kg-1 wet muscle. Electrical stimulation of the vastus lateralis muscle also failed to produce an increase in the percentage of phosphorylase a. These data suggest that during exercise the conversion of phosphorylase to the a form is of minor importance. An increased activity of phosphorylase b due to changes in muscle concentrations of ATP, AMP, and inorganic phosphate may regulate glycogenolysis during voluntary exercise in man.


1988 ◽  
Vol 255 (3) ◽  
pp. R513-R519 ◽  
Author(s):  
G. P. Dobson ◽  
W. S. Parkhouse ◽  
J. M. Weber ◽  
E. Stuttard ◽  
J. Harman ◽  
...  

The aim of this study was to examine some metabolic properties and changes that occur in skeletal muscle and blood of greyhounds after an 800-m sprint. Three prime moving fast-twitch muscles were selected: biceps femoris (BF), gastrocnemius (G), and vastus lateralis (VL). The amount of glycogen utilized during the event was 42.57, 43.86, and 42.73 mumol glucosyl units/g wet wt, respectively. Expressed as a function of race time (48.3 +/- 0.7 s, n = 3), the mean rate of glycogen breakdown was 53.48 +/- 0.5 mumol.g wet wt-1.min-1 during the sprint. This is equivalent to an ATP turnover of 160 mumol.g wet wt-1.min-1, assuming 100% anaerobic conversion to lactate. This represents a conservative estimate, since greyhound muscle is heterogeneous and comprised of a large percentage of fast-twitch oxidative fibers (Armstrong et al., Am. J. Anat. 163: 87-98, 1982). The large decrease in muscle glycogen was accompanied by a 6- to 7-fold increase in muscle lactate from 3.48 +/- 0.13 to 25.42 +/- 3.54 (BF), 2.54 +/- 1.05 to 18.96 +/- 2.60 (G), and 4.57 +/- 0.44 to 30.09 +/- 1.94 mumol.g wet wt (VL), and a fall in muscle pH from 6.88 +/- 0.03 to 6.40 +/- 0.02 (BF), 6.92 +/- 0.02 to 6.56 +/- 0.02 (G), and 6.93 +/- 0.02 to 6.47 +/- 0.01 (VL). Cytosolic phosphorylation potential in BF decreased 10-fold from 11,360 +/- 680 to 1,184 +/- 347, and redox potential decreased 5-fold, indicating a marked reduction in the cytosol at this time.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document