scholarly journals Voluntary wheel running initially increases adrenal sensitivity to adrenocorticotrophic hormone, which is attenuated with long-term training

2009 ◽  
Vol 106 (1) ◽  
pp. 66-72 ◽  
Author(s):  
Jonathan E. Campbell ◽  
Nasimeh Rakhshani ◽  
Sergiu Fediuc ◽  
Silvio Bruni ◽  
Michael C. Riddell

Although exercise is a common and potent activator of the hypothalamic-pituitary adrenal (HPA) axis, the effects of exercise on the acute stress response are not well understood. Here, we investigated the effects of short- (2 wk) and long-term (8 wk) voluntary wheel running on adrenal sensitivity to ACTH stimulation and the acute stress response to restraint in male rats. Diurnal glucocorticoid patterns were measured on days 7 (all groups) and 35 (8-wk groups). Rats were subjected to 20 min of restraint stress on either week 1 or on week 7 of treatment to assess HPA activation. One week later, exogenous ACTH (75 ng/kg) was administered to assess adrenal sensitivity to ACTH. Following this, adrenals were collected and analyzed for key proteins involved in corticosterone (CORT) synthesis. By the end of week 1, exercising (E) animals had twofold higher peak diurnal CORT levels compared with sedentary (S) animals ( P < 0.01). CORT values were not different between groups at week 8. In response to restraint stress at week 2, CORT values in E were approximately threefold greater than in S ( P < 0.05). No difference was found between E and S rats in the response to, or recovery from, restraint at week 8. During the ACTH challenge at week 2, E demonstrated a ∼2.5-fold increase in adrenal sensitivity compared with S, while no difference was found between E and S at week 8. The expression of steroidogenic acute regulatory protein was found to be ∼50% higher in the adrenals in E compared with S at week 2 ( P < 0.05), but no difference existed between groups at week 8. These results show that volitional wheel running initially causes hyperactivation of the HPA axis, due to enhanced adrenal sensitivity to ACTH, but that these alterations in HPA activity are completely restored by 8 wk of training.

2006 ◽  
Vol 100 (6) ◽  
pp. 1867-1875 ◽  
Author(s):  
Sergiu Fediuc ◽  
Jonathan E. Campbell ◽  
Michael C. Riddell

Adaptations of the hypothalamic-pituitary-adrenal (HPA) axis to voluntary exercise in rodents are not clear, because most investigations use forced-exercise protocols, which are associated with psychological stress. In the present study, we examined the effects of voluntary wheel running on the circadian corticosterone (Cort) rhythm as well as HPA axis responsiveness to, and recovery from, restraint stress. Male Sprague-Dawley rats were divided into exercise (E) and sedentary (S) groups, with E rats having 24-h access to running wheels for 5 wk. Circadian plasma Cort levels were measured at the end of each week, except for week 5 when rats were exposed to 20 min of restraint stress, followed by 95 min of recovery. Measurements of glucocorticoid receptor content in the hippocampus and anterior pituitary were performed using Western blotting at the termination of the restraint protocol. In week 1, circadian Cort levels were twofold higher in E compared with S animals, but the levels progressively decreased in the E group throughout the training protocol to reach similar values observed in S by week 4. During restraint stress and recovery, Cort values were similar between E and S, as was glucocorticoid receptor content in the hippocampus and pituitary gland after death. Compared with E, S animals had higher plasma ACTH levels during restraint. Taken together, these data indicate that 5 wk of wheel running are associated with normal circadian Cort activity and normal negative-feedback inhibition of the HPA axis, as well as with increased adrenal sensitivity to ACTH after restraint stress.


Author(s):  
Alexander S. Häusl ◽  
Lea M. Brix ◽  
Jakob Hartmann ◽  
Max L. Pöhlmann ◽  
Juan-Pablo Lopez ◽  
...  

AbstractDisturbed activation or regulation of the stress response through the hypothalamic-pituitary-adrenal (HPA) axis is a fundamental component of multiple stress-related diseases, including psychiatric, metabolic, and immune disorders. The FK506 binding protein 51 (FKBP5) is a negative regulator of the glucocorticoid receptor (GR), the main driver of HPA axis regulation, and FKBP5 polymorphisms have been repeatedly linked to stress-related disorders in humans. However, the specific role of Fkbp5 in the paraventricular nucleus of the hypothalamus (PVN) in shaping HPA axis (re)activity remains to be elucidated. We here demonstrate that the deletion of Fkbp5 in Sim1+ neurons dampens the acute stress response and increases GR sensitivity. In contrast, Fkbp5 overexpression in the PVN results in a chronic HPA axis over-activation, and a PVN-specific rescue of Fkbp5 expression in full Fkbp5 KO mice normalizes the HPA axis phenotype. Single-cell RNA sequencing revealed the cell-type-specific expression pattern of Fkbp5 in the PVN and showed that Fkbp5 expression is specifically upregulated in Crh+ neurons after stress. Finally, Crh-specific Fkbp5 overexpression alters Crh neuron activity, but only partially recapitulates the PVN-specific Fkbp5 overexpression phenotype. Together, the data establish the central and cell-type-specific importance of Fkbp5 in the PVN in shaping HPA axis regulation and the acute stress response.


2019 ◽  
Vol 317 (6) ◽  
pp. C1313-C1323 ◽  
Author(s):  
Matthew A. Romero ◽  
Petey W. Mumford ◽  
Paul A. Roberson ◽  
Shelby C. Osburn ◽  
Hailey A. Parry ◽  
...  

Transposable elements (TEs) are mobile DNA and constitute approximately half of the human genome. LINE-1 (L1) is the only active autonomous TE in the mammalian genome and has been implicated in a number of diseases as well as aging. We have previously reported that skeletal muscle L1 expression is lower following acute and chronic exercise training in humans. Herein, we used a rodent model of voluntary wheel running to determine whether long-term exercise training affects markers of skeletal muscle L1 regulation. Selectively bred high-running female Wistar rats ( n = 11 per group) were either given access to a running wheel (EX) or not (SED) at 5 wk of age, and these conditions were maintained until 27 wk of age. Thereafter, mixed gastrocnemius tissue was harvested and analyzed for L1 mRNA expression and DNA content along with other L1 regulation markers. We observed significantly ( P < 0.05) lower L1 mRNA expression, higher L1 DNA methylation, and less L1 DNA in accessible chromatin regions in EX versus SED rats. We followed these experiments with 3-h in vitro drug treatments in L6 myotubes to mimic transient exercise-specific signaling events. The AMP-activated protein kinase (AMPK) agonist 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR; 4 mM) significantly decreased L1 mRNA expression in L6 myotubes. However, this effect was not facilitated through increased L1 DNA methylation. Collectively, these data suggest that long-term voluntary wheel running downregulates skeletal muscle L1 mRNA, and this may occur through chromatin modifications. Enhanced AMPK signaling with repetitive exercise bouts may also decrease L1 mRNA expression, although the mechanism of action remains unknown.


2020 ◽  
Vol 533 (4) ◽  
pp. 1505-1511
Author(s):  
Shima Mojtahedi ◽  
Fatemeh Shabkhiz ◽  
Ali Asghar Ravasi ◽  
Sara Rosenkranz ◽  
Rahman Soori ◽  
...  

2016 ◽  
Vol 156 ◽  
pp. 8-15 ◽  
Author(s):  
Andrew C. Venezia ◽  
Lisa M. Guth ◽  
Ryan M. Sapp ◽  
Espen E. Spangenburg ◽  
Stephen M. Roth

Sign in / Sign up

Export Citation Format

Share Document