scholarly journals Neuromuscular adjustments of gait associated with unstable conditions

2015 ◽  
Vol 114 (5) ◽  
pp. 2867-2882 ◽  
Author(s):  
G. Martino ◽  
Y. P. Ivanenko ◽  
A. d'Avella ◽  
M. Serrao ◽  
A. Ranavolo ◽  
...  

A compact description of coordinated muscle activity is provided by the factorization of electromyographic (EMG) signals. With the use of this approach, it has consistently been shown that multimuscle activity during human locomotion can be accounted for by four to five modules, each one comprised of a basic pattern timed at a different phase of gait cycle and the weighting coefficients of synergistic muscle activations. These modules are flexible, in so far as the timing of patterns and the amplitude of weightings can change as a function of gait speed and mode. Here we consider the adjustments of the locomotor modules related to unstable walking conditions. We compared three different conditions, i.e., locomotion of healthy subjects on slippery ground (SL) and on narrow beam (NB) and of cerebellar ataxic (CA) patients on normal ground. Motor modules were computed from the EMG signals of 12 muscles of the right lower limb using non-negative matrix factorization. The unstable gait of SL, NB, and CA showed significant changes compared with controls in the stride length, stride width, range of angular motion, and trunk oscillations. In most subjects of all three unstable conditions, >70% of the overall variation of EMG waveforms was accounted for by four modules that were characterized by a widening of muscle activity patterns. This suggests that the nervous system adopts the strategy of prolonging the duration of basic muscle activity patterns to cope with unstable conditions resulting from either slippery ground, reduced support surface, or pathology.

2017 ◽  
Vol 117 (4) ◽  
pp. 1713-1719 ◽  
Author(s):  
Lauren R. Dean ◽  
Stuart N. Baker

Movements in response to acoustically startling cues have shorter reaction times than those following less intense sounds; this is known as the StartReact effect. The neural underpinnings for StartReact are unclear. One possibility is that startling cues preferentially invoke the reticulospinal tract to convey motor commands to spinal motoneurons. Reticulospinal outputs are highly divergent, controlling large groups of muscles in synergistic patterns. By contrast the dominant pathway in primate voluntary movement is the corticospinal tract, which can access small groups of muscles selectively. We therefore hypothesized that StartReact responses would be less fractionated than standard voluntary reactions. Electromyogram recordings were made from 15 muscles in 10 healthy human subjects as they carried out 32 varied movements with the right forelimb in response to startling and nonstartling auditory cues. Movements were chosen to elicit a wide range of muscle activations. Multidimensional muscle activity patterns were calculated at delays from 0 to 100 ms after the onset of muscle activity and subjected to principal component analysis to assess fractionation. In all cases, a similar proportion of the total variance could be explained by a reduced number of principal components for the startling and the nonstartling cue. Muscle activity patterns for a given task were very similar in response to startling and nonstartling cues. This suggests that movements produced in the StartReact paradigm rely on similar contributions from different descending pathways as those following voluntary responses to nonstartling cues. NEW & NOTEWORTHY We demonstrate that the ability to activate muscles selectively is preserved during the very rapid reactions produced following a startling cue. This suggests that the contributions from different descending pathways are comparable between these rapid reactions and more typical voluntary movements.


2009 ◽  
Vol 101 (4) ◽  
pp. 2062-2076 ◽  
Author(s):  
Keith E. Gordon ◽  
Ming Wu ◽  
Jennifer H. Kahn ◽  
Yasin Y. Dhaher ◽  
Brian D. Schmit

The purpose of this research was to examine the role of isolated ankle-foot load in regulating locomotor patterns in humans with and without spinal cord injury (SCI). We used a powered ankle-foot orthosis to unilaterally load the ankle and foot during robotically assisted airstepping. The load perturbation consisted of an applied dorsiflexion torque designed to stimulate physiological load sensors originating from the ankle plantar flexor muscles and pressure receptors on the sole of the foot. We hypothesized that 1) the response to load would be phase specific with enhanced ipsilateral extensor muscle activity and joint torque occurring when unilateral ankle-foot load was provided during the stance phase of walking and 2) that the phasing of subject produced hip moments would be modulated by varying the timing of the applied ankle-foot load within the gait cycle. As expected, both SCI and nondisabled subjects demonstrated a significant increase ( P < 0.05) in peak hip extension moments (142 and 43% increase, respectively) when given ankle-foot load during the stance phase compared with no ankle-foot load. In SCI subjects, this enhanced hip extension response was accompanied by significant increases ( P < 0.05) in stance phase gluteus maximus activity (27% increase). In addition, when ankle-foot load was applied either 200 ms earlier or later within the gait cycle, SCI subjects demonstrated significant phase shifts (∼100 ms) in hip moment profile ( P < 0.05; i.e., the onset of hip extension moments occurred earlier when ankle-foot load was applied earlier). This study provides new insights into how individuals with spinal cord injury use sensory feedback from ankle-foot load afferents to regulate hip joint moments and muscle activity during gait.


1980 ◽  
Vol 84 (1) ◽  
pp. 17-32
Author(s):  
G. V. LAUDER ◽  
S. M. NORTON

Prey capture in the spotted gar, Lepisosteus oculatus, was studied by high-speed cinematography synchronized with electromyographic recordings of cranial muscle activity. Muscle activity patterns were recorded during each of the three major phases of feeding: the initial strike at the prey, manipulation of the prey following capture, and swallowing. With one exception, the obliquus superioris, all muscles at the strike are active in a bilaterally symmetrical pattern. During the manipulation phase two distinct muscle activity patterns occur: one is characterized by symmetrical activity in the epaxial muscles and obliquus inferioris, the other by complete asymmetry between the right and left sternohyoideus, obliquus superioris, and epaxial muscles. Low-amplitude manipulatory movements are characterized by activity in one side of the sternohyoideus only, all other muscles being generally inactive. The adductor mandibulae and obliquus inferioris are always active symmetrically. Asymmetrical activity in the sternohyoideus, epaxial muscles, and obliquus superioris correlates with lateral head movements during feeding and acts to rotate prey into the preferred orientation for swallowing. The pattern of asymmetrical activity between right and left side muscles is discussed in relation to previous studies of feeding which utilized only unilateral muscle recordings.


2001 ◽  
Vol 123 (5) ◽  
pp. 381-390 ◽  
Author(s):  
Frank C. Anderson ◽  
Marcus G. Pandy

A three-dimensional, neuromusculoskeletal model of the body was combined with dynamic optimization theory to simulate normal walking on level ground. The body was modeled as a 23 degree-of-freedom mechanical linkage, actuated by 54 muscles. The dynamic optimization problem was to calculate the muscle excitation histories, muscle forces, and limb motions subject to minimum metabolic energy expenditure per unit distance traveled. Muscle metabolic energy was calculated by summing five terms: the basal or resting heat, activation heat, maintenance heat, shortening heat, and the mechanical work done by all the muscles in the model. The gait cycle was assumed to be symmetric; that is, the muscle excitations for the right and left legs and the initial and terminal states in the model were assumed to be equal. Importantly, a tracking problem was not solved. Rather, only a set of terminal constraints was placed on the states of the model to enforce repeatability of the gait cycle. Quantitative comparisons of the model predictions with patterns of body-segmental displacements, ground-reaction forces, and muscle activations obtained from experiment show that the simulation reproduces the salient features of normal gait. The simulation results suggest that minimum metabolic energy per unit distance traveled is a valid measure of walking performance.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Meir Meshulam ◽  
Liat Hasenfratz ◽  
Hanna Hillman ◽  
Yun-Fei Liu ◽  
Mai Nguyen ◽  
...  

AbstractDespite major advances in measuring human brain activity during and after educational experiences, it is unclear how learners internalize new content, especially in real-life and online settings. In this work, we introduce a neural approach to predicting and assessing learning outcomes in a real-life setting. Our approach hinges on the idea that successful learning involves forming the right set of neural representations, which are captured in canonical activity patterns shared across individuals. Specifically, we hypothesized that learning is mirrored in neural alignment: the degree to which an individual learner’s neural representations match those of experts, as well as those of other learners. We tested this hypothesis in a longitudinal functional MRI study that regularly scanned college students enrolled in an introduction to computer science course. We additionally scanned graduate student experts in computer science. We show that alignment among students successfully predicts overall performance in a final exam. Furthermore, within individual students, we find better learning outcomes for concepts that evoke better alignment with experts and with other students, revealing neural patterns associated with specific learned concepts in individuals.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3422
Author(s):  
Jian-Zhi Lin ◽  
Wen-Yu Chiu ◽  
Wei-Hsun Tai ◽  
Yu-Xiang Hong ◽  
Chung-Yu Chen

This study analysed the landing performance and muscle activity of athletes in forefoot strike (FFS) and rearfoot strike (RFS) patterns. Ten male college participants were asked to perform two foot strikes patterns, each at a running speed of 6 km/h. Three inertial sensors and five EMG sensors as well as one 24 G accelerometer were synchronised to acquire joint kinematics parameters as well as muscle activation, respectively. In both the FFS and RFS patterns, according to the intraclass correlation coefficient, excellent reliability was found for landing performance and muscle activation. Paired t tests indicated significantly higher ankle plantar flexion in the FFS pattern. Moreover, biceps femoris (BF) and gastrocnemius medialis (GM) activation increased in the pre-stance phase of the FFS compared with that of RFS. The FFS pattern had significantly decreased tibialis anterior (TA) muscle activity compared with the RFS pattern during the pre-stance phase. The results demonstrated that the ankle strategy focused on controlling the foot strike pattern. The influence of the FFS pattern on muscle activity likely indicates that an athlete can increase both BF and GM muscles activity. Altered landing strategy in cases of FFS pattern may contribute both to the running efficiency and muscle activation of the lower extremity. Therefore, neuromuscular training and education are required to enable activation in dynamic running tasks.


Work ◽  
2021 ◽  
pp. 1-8
Author(s):  
Fabiana Foltran Mescollotto ◽  
Érica Brito Gonçalves ◽  
Ester Moreira de Castro Carletti ◽  
Ana Beatriz Oliveira ◽  
Elisa Bizetti Pelai ◽  
...  

Background: Excessive use of smartphones may be associated with behavioral and physical health changes and might cause musculoskeletal alterations in the head and neck region. Objective: To evaluate the prevalence of smartphone addiction in college students and its correlation with symptoms of head and neck pain and masticatory and trapezius muscle activity while resting, before and after smartphone use. Methods: Twenty university students participated in the study. They answered the Smartphone Addiction Scale and the Fonseca Anamnestic Index. Next, the participants were seated and prepared for electromyography through the placement of surface electrodes on the masseter, temporal, and trapezius muscles. Rest condition data were collected for 10 seconds before and after 30 minutes of smartphone use. Results: The results showed that 35% of the evaluated individuals were classified as smartphone addicted and 35% reported no head or neck pain in the previous 30 days. There was no association between smartphone use and head and neck pain. In the electromyography, there was an increase in RMS values after smartphone use in the right and left masseter muscles and the left trapezius. Conclusion: College students presented a high prevalence of smartphone addiction and head and neck pain, but these were not statistically associated. There was a change in muscle activity only in the right trapezius muscles before and after 30 minutes of smartphone use. These findings are contrary to the current belief that the use of smartphones correlates with pain in the neck region and changes in the electrical muscle activity, leading to fatigue in the cervical muscles.


2011 ◽  
Vol 105 (5) ◽  
pp. 2375-2388 ◽  
Author(s):  
Julia A. Leonard ◽  
Valeriya Gritsenko ◽  
Ryan Ouckama ◽  
Paul J. Stapley

The aim of this study was to investigate how humans correct ongoing arm movements while standing. Specifically, we sought to understand whether the postural adjustments in the legs required for online corrections of arm movements are predictive or rely on feedback from the moving limb. To answer this question we measured online corrections in arm and leg muscles during pointing movements while standing. Nine healthy right-handed subjects reached with their dominant arm to a visual target in front of them and aligned with their midline. In some trials, the position of the target would switch from the central target to one of the other targets located 15°, 30°, or 45° to the right of the central (midline) target. For each target correction, we measured the time at which arm kinematics, ground reaction forces, and arm and leg muscle electromyogram significantly changed in response to the target displacement. Results show that postural adjustments in the left leg preceded kinematic corrections in the limb. The corrective postural muscle activity in the left leg consistently preceded the corrective reaching muscle activity in the right arm. Our results demonstrate that corrections of arm movements in response to target displacement during stance are preceded by postural adjustments in the leg contralateral to the direction of target shift. Furthermore, postural adjustments preceded both the hand trajectory correction and the arm-muscle activity responsible for it, which suggests that the central nervous system does not depend on feedback from the moving arm to modify body posture during voluntary movement. Instead, postural adjustments lead the online correction in the arm the same way they lead the initiation of voluntary arm movements. This suggests that forward models for voluntary movements executed during stance incorporate commands for posture that are produced on the basis of the required task demands.


Sign in / Sign up

Export Citation Format

Share Document