Modulation of Dorsal Spinocerebellar Responses to Limb Movement. I. Effect of Serotonin

2003 ◽  
Vol 90 (5) ◽  
pp. 3361-3371 ◽  
Author(s):  
G. Bosco ◽  
A. Rankin ◽  
R. E. Poppele

Spinocerebellar neurons (DSCT) receive converging sensory information from various sensory receptors in the hindlimbs and lower trunk. Previous studies have shown that sensory processing by DSCT neurons results in a representation of global hindlimb kinematic parameters such as the length and the orientation of the limb axis. In addition to the sensory input, the DSCT circuitry also receives a descending input from the raphe nuclei in the brain stem. Recent studies have demonstrated that the raphe serotonergic terminals synapse directly on DSCT neurons and exert a differential modulatory influence on their sensory inputs. We examined the role of serotonergic modulation on the DSCT representation of hindlimb kinematic parameters by recording DSCT activity during passive hindlimb movements before and after perturbing serotonergic transmission. We used two types of perturbation: electrical stimulation of the raphe areas in the brain stem to release serotonin in the spinal cord (42 neurons) and intravenous administration of serotonergic agonists or antagonists, mostly the 5HTP2 antagonist ketanserin (30 neurons). We found that movement responses were altered in ∼70% of the DSCT units studied with each protocol. Changes could include shifts in mean firing rate, increases or decreases in response amplitude, and changes in response waveform. We used a principal component analysis (PCA) to examine waveform components and to determine how they contributed to the response waveform changes caused by serotonin perturbation. Such changes could be explained by new or different response components that might indicate a modification in the data processing or by a different weighting of existing components that might indicate a modification of synaptic weighting. The results were consistent with the second alternative. We found that the same underlying response components could account for both control responses and those altered by serotonin perturbations. The observed changes in waveform could be entirely accounted for by a re-weighting of response components. In particular, the changes observed after raphe stimulation could be accounted for by selective changes in the weighting of the first principal component (PC) with only minor changes of the weighting of the second PC. Because these response components were shown previously to correlate with the limb axis orientation and length trajectories respectively, the finding is consistent with the idea that limb axis length and orientation information are processed separately within the spinal circuitry.

Author(s):  
J. Eric Ahlskog

As a prelude to the treatment chapters that follow, we need to define and describe the types of problems and symptoms encountered in DLB and PDD. The clinical picture can be quite varied: problems encountered by one person may be quite different from those encountered by another person, and symptoms that are problematic in one individual may be minimal in another. In these disorders, the Lewy neurodegenerative process potentially affects certain nervous system regions but spares others. Affected areas include thinking and memory circuits, as well as movement (motor) function and the autonomic nervous system, which regulates primary functions such as bladder, bowel, and blood pressure control. Many other brain regions, by contrast, are spared or minimally involved, such as vision and sensation. The brain and spinal cord constitute the central nervous system. The interface between the brain and spinal cord is by way of the brain stem, as shown in Figure 4.1. Thought, memory, and reasoning are primarily organized in the thick layers of cortex overlying lower brain levels. Volitional movements, such as writing, throwing, or kicking, also emanate from the cortex and integrate with circuits just below, including those in the basal ganglia, shown in Figure 4.2. The basal ganglia includes the striatum, globus pallidus, subthalamic nucleus, and substantia nigra, as illustrated in Figure 4.2. Movement information is integrated and modulated in these basal ganglia nuclei and then transmitted down the brain stem to the spinal cord. At spinal cord levels the correct sequence of muscle activation that has been programmed is accomplished. Activated nerves from appropriate regions of the spinal cord relay the signals to the proper muscles. Sensory information from the periphery (limbs) travels in the opposite direction. How are these signals transmitted? Brain cells called neurons have long, wire-like extensions that interface with other neurons, effectively making up circuits that are slightly similar to computer circuits; this is illustrated in Figure 4.3. At the end of these wire-like extensions are tiny enlargements (terminals) that contain specific biological chemicals called neurotransmitters. Neurotransmitters are released when the electrical signal travels down that neuron to the end of that wire-like process.


Cephalalgia ◽  
1994 ◽  
Vol 14 (2) ◽  
pp. 143-148 ◽  
Author(s):  
H Göbel ◽  
S Krapat ◽  
M Dworschak ◽  
D Heuss ◽  
FBM Ensink ◽  
...  

We compared the early (ESI) and late (ES2) exteroceptive suppression (ES) periods of temporalis muscle activity in 18 migraine patients during both the migraine interval and migraine attack and investigated the effect of sumatriptan and placebo on ES parameters. The measurements were performed in a balanced sequence at four different times on each patient, twice during the migraine interval and once in each of two migraine attacks. First ES1 and ES2 were measured (stimulus intensity 20 mA, stimulus duration 0.2 ms, stimulation frequency 2 Hz, averaging of 10 responses), then the medication was given on a double-blind basis with an autoinjector using either 6 mg sumatriptan or a placebo solution. Thirty minutes after application the measurements were repeated. No significant differences were found in early and late exteroceptive suppression latencies and durations between baseline measurements. Treatment did not affect the latencies of ESI and ES2. While sumatriptan caused a significant increase in ES1 duration (p £ 0.05) both during the migraine interval and during the migraine attack, placebo showed no significant effect on ES1 duration. Treatment with sumatriptan during the migraine attack was accompanied by a significant increase in the duration of ES2 (p £ 0.05), but no significant changes in the durations of the late suppression periods were observed under any other conditions. The results do not support the assumption that under the experimental conditions chosen migraine attacks are accompanied by a paroxysmal change in the brain-stem mechanisms involved in the modulation of the ES parameters. Since sumatriptan during the migraine interval selectively lengthens ES1 but not ES2, it can be assumed that the substance has a primary effect on brain-stem mechanisms in migraine patients that cannot be explained in terms of secondary pain-induced mechanisms.


2019 ◽  
Vol 122 (5) ◽  
pp. 2061-2075
Author(s):  
Omer Tsur ◽  
Yana Khrapunsky ◽  
Rony Azouz

The rodent’s vibrissal system is a useful model system for studying sensorimotor integration in perception. This integration determines the way in which sensory information is acquired by sensory organs and the motor commands that control them. The initial instance of sensorimotor integration in the whisker somatosensory system is implemented in the brain stem loop and may be essential to the way rodents explore and sense their environment. To examine the nature of these sensorimotor interactions, we recorded from lightly anesthetized rats in vivo and brain stem slices in vitro and isolated specific parts of this loop. We found that motor feedback to the vibrissal pad serves as a dynamic gain controller that controls the response of first-order sensory neurons by increasing and decreasing sensitivity to lower and higher tactile stimulus magnitudes, respectively. This delicate mechanism is mediated through tactile stimulus magnitude-dependent motor feedback. Conversely, tactile inputs affect the motor whisking output through influences on the rhythmic whisking circuitry, thus changing whisking kinetics. Similarly, tactile influences also modify the whisking amplitude through synaptic and intrinsic neuronal interaction in the facial nucleus, resulting in facilitation or suppression of whisking amplitude. These results point to the vast range of mechanisms underlying sensorimotor integration in the brain stem loop. NEW & NOTEWORTHY Sensorimotor integration is a process in which sensory and motor information is combined to control the flow of sensory information, as well as to adjust the motor system output. We found in the rodent’s whisker somatosensory system mutual influences between tactile inputs and motor output, in which motor neurons control the flow of sensory information depending on their magnitude. Conversely, sensory information can control the magnitude and kinetics of whisker movement.


2011 ◽  
Vol 106 (3) ◽  
pp. 1363-1378 ◽  
Author(s):  
Jinsook Roh ◽  
Vincent C. K. Cheung ◽  
Emilio Bizzi

Previous studies using intact and spinalized animals have suggested that coordinated movements can be generated by appropriate combinations of muscle synergies controlled by the central nervous system (CNS). However, which CNS regions are responsible for expressing muscle synergies remains an open question. We address whether the brain stem and spinal cord are involved in expressing muscle synergies used for executing a range of natural movements. We analyzed the electromyographic (EMG) data recorded from frog leg muscles before and after transection at different levels of the neuraxis—rostral midbrain (brain stem preparations), rostral medulla (medullary preparations), and the spinal-medullary junction (spinal preparations). Brain stem frogs could jump, swim, kick, and step, while medullary frogs could perform only a partial repertoire of movements. In spinal frogs, cutaneous reflexes could be elicited. Systematic EMG analysis found two different synergy types: 1) synergies shared between pre- and posttransection states and 2) synergies specific to individual states. Almost all synergies found in natural movements persisted after transection at rostral midbrain or medulla but not at the spinal-medullary junction for swim and step. Some pretransection- and posttransection-specific synergies for a certain behavior appeared as shared synergies for other motor behaviors of the same animal. These results suggest that the medulla and spinal cord are sufficient for the expression of most muscle synergies in frog behaviors. Overall, this study provides further evidence supporting the idea that motor behaviors may be constructed by muscle synergies organized within the brain stem and spinal cord and activated by descending commands from supraspinal areas.


1975 ◽  
Vol 43 (6) ◽  
pp. 676-688 ◽  
Author(s):  
Yasuo Kawamura ◽  
John Stirling Meyer ◽  
Hideharu Hiromoto ◽  
Minoru Aoyagi ◽  
Yukio Tagashira ◽  
...  

✓ Cerebral chemical vasomotor reactivity and autoregulation were tested in normal baboons before and after the intravenous or intravertebral infusion of atropine sulfate (0.02 mg/kg). Atropine did not appreciably affect autoregulatory response, but intravertebral injection suppressed the increase of cerebral blood flow (CBF) by inhalation of 5% CO2 and enhanced the decrease of CBF induced by hyperventilation. These changes produced by intravertebral injection of atropine were not observed after intravenous injection. Since the vertebrobasilar arterial system supplies the brain stem and diencephalon, this suggests that a central vasodilator tonus of the cerebral vessels is maintained by the innervation of the cerebral vessels by cholinergic neurons which have their central origin in the brain stem and diencephalic area.


2021 ◽  
Vol 118 (27) ◽  
pp. e2011905118
Author(s):  
Nadina O. Zweifel ◽  
Nicholas E. Bush ◽  
Ian Abraham ◽  
Todd D. Murphey ◽  
Mitra J. Z. Hartmann

As it becomes possible to simulate increasingly complex neural networks, it becomes correspondingly important to model the sensory information that animals actively acquire: the biomechanics of sensory acquisition directly determines the sensory input and therefore neural processing. Here, we exploit the tractable mechanics of the well-studied rodent vibrissal (“whisker”) system to present a model that can simulate the signals acquired by a full sensor array actively sampling the environment. Rodents actively “whisk” ∼60 vibrissae (whiskers) to obtain tactile information, and this system is therefore ideal to study closed-loop sensorimotor processing. The simulation framework presented here, WHISKiT Physics, incorporates realistic morphology of the rat whisker array to predict the time-varying mechanical signals generated at each whisker base during sensory acquisition. Single-whisker dynamics were optimized based on experimental data and then validated against free tip oscillations and dynamic responses to collisions. The model is then extrapolated to include all whiskers in the array, incorporating each whisker’s individual geometry. Simulation examples in laboratory and natural environments demonstrate that WHISKiT Physics can predict input signals during various behaviors, currently impossible in the biological animal. In one exemplary use of the model, the results suggest that active whisking increases in-plane whisker bending compared to passive stimulation and that principal component analysis can reveal the relative contributions of whisker identity and mechanics at each whisker base to the vibrissotactile response. These results highlight how interactions between array morphology and individual whisker geometry and dynamics shape the signals that the brain must process.


Author(s):  
Shams M. Ghoneim ◽  
Frank M. Faraci ◽  
Gary L. Baumbach

The area postrema is a circumventricular organ in the brain stem and is one of the regions in the brain that lacks a fully functional blood-brain barrier. Recently, we found that disruption of the microcirculation during acute hypertension is greater in area postrema than in the adjacent brain stem. In contrast, hyperosmolar disruption of the microcirculation is greater in brain stem. The objective of this study was to compare ultrastructural characteristics of the microcirculation in area postrema and adjacent brain stem.We studied 5 Sprague-Dawley rats. Horseradish peroxidase was injected intravenously and allowed to circulate for 1, 5 or 15 minutes. Following perfusion of the upper body with 2.25% glutaraldehyde in 0.1 M sodium cacodylate, the brain stem was removed, embedded in agar, and chopped into 50-70 μm sections with a TC-Sorvall tissue chopper. Sections of brain stem were incubated for 1 hour in a solution of 3,3' diaminobenzidine tetrahydrochloride (0.05%) in 0.05M Tris buffer with 1% H2O2.


1993 ◽  
Vol 4 (3) ◽  
pp. 457-468 ◽  
Author(s):  
Dennis Y. Wen ◽  
Roberto C. Heros

1999 ◽  
Vol 13 (2) ◽  
pp. 117-125 ◽  
Author(s):  
Laurence Casini ◽  
Françoise Macar ◽  
Marie-Hélène Giard

Abstract The experiment reported here was aimed at determining whether the level of brain activity can be related to performance in trained subjects. Two tasks were compared: a temporal and a linguistic task. An array of four letters appeared on a screen. In the temporal task, subjects had to decide whether the letters remained on the screen for a short or a long duration as learned in a practice phase. In the linguistic task, they had to determine whether the four letters could form a word or not (anagram task). These tasks allowed us to compare the level of brain activity obtained in correct and incorrect responses. The current density measures recorded over prefrontal areas showed a relationship between the performance and the level of activity in the temporal task only. The level of activity obtained with correct responses was lower than that obtained with incorrect responses. This suggests that a good temporal performance could be the result of an efficacious, but economic, information-processing mechanism in the brain. In addition, the absence of this relation in the anagram task results in the question of whether this relation is specific to the processing of sensory information only.


Sign in / Sign up

Export Citation Format

Share Document