scholarly journals Functional connectivity between somatosensory and motor brain areas predicts individual differences in motor learning by observing

2017 ◽  
Vol 118 (2) ◽  
pp. 1235-1243 ◽  
Author(s):  
Heather R. McGregor ◽  
Paul L. Gribble

We show that individual differences in preobservation brain function can predict subsequent observation-related gains in motor learning. Preobservation resting-state functional connectivity within a sensory-motor network may be used as a biomarker for the extent to which observation promotes motor learning. This kind of information may be useful if observation is to be used as a way to boost neuroplasticity and sensory-motor recovery for patients undergoing rehabilitation for diseases that impair movement such as stroke.

2017 ◽  
Author(s):  
Heather R. McGregor ◽  
Paul L. Gribble

AbstractAction observation can facilitate the acquisition of novel motor skills, however, there is considerable individual variability in the extent to which observation promotes motor learning. Here we tested the hypothesis that individual differences in brain function or structure can predict subsequent observation-related gains in motor learning. Subjects underwent an anatomical MRI scan and resting-state fMRI scans to assess pre-observation grey matter volume and pre-observation resting-state functional connectivity (FC), respectively. On the following day, subjects observed a video of a tutor adapting her reaches to a novel force field. After observation, subjects performed reaches in a force field as a behavioral assessment of gains in motor learning resulting from observation. We found that individual differences in resting-state FC, but not grey matter volume, predicted post-observation gains in motor learning. Pre-observation resting-state FC between left S1 and bilateral PMd, M1, S1 and left SPL was positively correlated with behavioral measures of post-observation motor learning. Sensory-motor resting-state FC can thus predict the extent to which observation will promote subsequent motor learning.New & NoteworthyWe show that individual differences in pre-observation brain function can predict subsequent observation-related gains in motor learning. Pre-observation resting-state functional connectivity within a sensory-motor network may be used as a biomarker for the extent to which observation promotes motor learning. This kind of information may be useful if observation is to be used as a way to boost neuroplasticity and sensory motor recovery for patients undergoing rehabilitation for diseases that impair movement such as stroke.


2021 ◽  
Author(s):  
ATP Jäger ◽  
JM Huntenburg ◽  
SA Tremblay ◽  
U Schneider ◽  
S Grahl ◽  
...  

AbstractIn motor learning, sequence-specificity, i.e. the learning of specific sequential associations, has predominantly been studied using task-based fMRI paradigms. However, offline changes in resting state functional connectivity after sequence-specific motor learning are less well understood. Previous research has established that plastic changes following motor learning can be divided into stages including fast learning, slow learning and retention. A description of how resting state functional connectivity after sequence-specific motor sequence learning (MSL) develops across these stages is missing. This study aimed to identify plastic alterations in whole-brain functional connectivity after learning a complex motor sequence by contrasting an active group who learned a complex sequence with a control group who performed a control task matched for motor execution. Resting state fMRI and behavioural performance were collected in both groups over the course of 5 consecutive training days and at follow-up after 12 days to encompass fast learning, slow learning, overall learning and retention. Between-group interaction analyses showed sequence-specific increases in functional connectivity during fast learning in the sensorimotor territory of the internal segment of right globus pallidus (GPi), and sequence-specific decreases in right supplementary motor area (SMA) in overall learning. We found that connectivity changes in key regions of the motor network including the superior parietal cortex (SPC) and primary motor cortex (M1) were not a result of sequence-specific learning but were instead linked to motor execution. Our study confirms the sequence-specific role of SMA and GPi that has previously been identified in online task-based learning studies in humans and primates, and extends it to resting state network changes after sequence-specific MSL. Finally, our results shed light on a timing-specific plasticity mechanism between GPi and SMA following MSL.


2013 ◽  
Vol 51 (13) ◽  
pp. 2918-2929 ◽  
Author(s):  
Alisha L. Janssen ◽  
Aaron Boster ◽  
Beth A. Patterson ◽  
Amir Abduljalil ◽  
Ruchika Shaurya Prakash

2020 ◽  
Author(s):  
Christiane Wesarg ◽  
Ilya M. Veer ◽  
Nicole Y. L. Oei ◽  
Laura S. Daedelow ◽  
Tristram A. Lett ◽  
...  

AbstractExtensive research has demonstrated that rs1360780, a common single nucleotide polymorphism within the FKBP5 gene, interacts with early-life stress in predicting psychopathology. Previous results suggest that carriers of the TT genotype of rs1360780 who were exposed to child abuse show differences in structure and functional activation of emotion-processing brain areas belonging to the salience network. Extending these findings on intermediate phenotypes of psychopathology, we examined if the interaction between rs1360780 and child abuse predicts resting-state functional connectivity (rsFC) between the amygdala and other areas of the salience network. We analyzed data of young European adults from the general population (N = 774; mean age = 18.76 years) who took part in the IMAGEN study. In the absence of main effects of genotype and abuse, a significant interaction effect was observed for rsFC between the right centromedial amygdala and right posterior insula (p < .025, FWE-corrected), which was driven by stronger rsFC in TT allele carriers with a history of abuse. Our results suggest that the TT genotype of rs1360780 may render individuals with a history of abuse more vulnerable to functional changes in communication between brain areas processing emotions and bodily sensations, which could underlie or increase risk for psychopathology.


2019 ◽  
Vol 126 (4) ◽  
pp. 1032-1041 ◽  
Author(s):  
Christina J. Dimech ◽  
John A. E. Anderson ◽  
Amber W. Lockrow ◽  
R. Nathan Spreng ◽  
Gary R. Turner

We investigated sex differences in the association between a measure of physical health, cardiorespiratory fitness (CRF), and brain function using resting-state functional connectivity fMRI. We examined these sex differences in the default, frontoparietal control, and cingulo-opercular networks, assemblies of functionally connected brain regions known to be impacted by both age and fitness level. Healthy older adults ( n = 49; 29 women) were scanned to obtain measures of intrinsic connectivity within and across these 3 networks. We calculated global efficiency (a measure of network integration) and local efficiency (a measure of network specialization) using graph theoretical methods. Across all three networks combined, local efficiency was positively associated with CRF, and this was more robust in male versus female older adults. Furthermore, global efficiency was negatively associated with CRF, but only in males. Our findings suggest that in older adults, associations between brain network integrity and physical health are sex-dependent. These results underscore the importance of considering sex differences when examining associations between fitness and brain function in older adulthood. NEW & NOTEWORTHY We examined the association between cardiorespiratory fitness and resting state functional connectivity in several brain networks known to be impacted by age and fitness level. We found significant associations between fitness and measures of network integration and network specialization, but in a sex-dependent manner, highlighting the interplay between sex differences, fitness, and aging brain health. Our findings underscore the importance of considering sex differences when examining associations between fitness and brain function in older adulthood.


2019 ◽  
Vol 29 (11) ◽  
pp. 4646-4653 ◽  
Author(s):  
Rory Pijnenburg ◽  
Lianne H Scholtens ◽  
Dante Mantini ◽  
Wim Vanduffel ◽  
Lisa Feldman Barrett ◽  
...  

Abstract Functional connectivity is defined as the statistical dependency of neurophysiological activity between 2 separate brain areas. To investigate the biological characteristics of resting-state functional connectivity (rsFC)—and in particular the significance of connection-wise variation in time-series correlations—rsFC was compared with strychnine-based connectivity measured in the macaque. Strychnine neuronography is a historical technique that induces activity in cortical areas through means of local administration of the substance strychnine. Strychnine causes local disinhibition through GABA suppression and leads to subsequent activation of functional pathways. Multiple resting-state fMRI recordings were acquired in 4 macaques (examining in total 299 imaging runs) from which a group-averaged rsFC matrix was constructed. rsFC was observed to be higher (P &lt; 0.0001) between region-pairs with a strychnine-based connection as compared with region-pairs with no strychnine-based connection present. In particular, higher resting-state connectivity was observed in connections that were relatively stronger (weak &lt; moderate &lt; strong; P &lt; 0.01) and in connections that were bidirectional (P &lt; 0.0001) instead of unidirectional in strychnine-based connectivity. Our results imply that the level of correlation between brain areas as extracted from resting-state fMRI relates to the strength of underlying interregional functional pathways.


NeuroImage ◽  
2020 ◽  
Vol 210 ◽  
pp. 116562 ◽  
Author(s):  
Hisato Sugata ◽  
Kazuhiro Yagi ◽  
Shogo Yazawa ◽  
Yasunori Nagase ◽  
Kazuhito Tsuruta ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document