How word frequency affects morphological processing in monolinguals and bilinguals

2003 ◽  
Vol 6 (3) ◽  
pp. 213-225 ◽  
Author(s):  
MINNA LEHTONEN ◽  
MATTI LAINE

The present study investigated processing of morphologically complex words in three different frequency ranges in monolingual Finnish speakers and Finnish-Swedish bilinguals. By employing a visual lexical decision task, we found a differential pattern of results in monolinguals vs. bilinguals. Monolingual Finns seemed to process low frequency and medium frequency inflected Finnish nouns mostly by morpheme-based recognition but high frequency inflected nouns through full-form representations. In contrast, bilinguals demonstrated a processing delay for all inflections throughout the whole frequency range, suggesting decomposition for all inflected targets. This may reflect different amounts of exposure to the word forms in the two groups. Inflected word forms that are encountered very frequently will acquire full-form representations, which saves processing time. However, with the lower rates of exposure, which characterize bilingual individuals, full-form representations do not start to develop.

2007 ◽  
Vol 28 (1) ◽  
pp. 135-156 ◽  
Author(s):  
MARJA PORTIN ◽  
MINNA LEHTONEN ◽  
MATTI LAINE

This study investigated the recognition of Swedish inflected nouns in two participant groups. Both groups were Finnish-speaking late learners of Swedish, but the groups differed in regard to their Swedish language proficiency. In a visual lexical decision task, inflected Swedish nouns from three frequency ranges were contrasted with corresponding monomorphemic nouns. The reaction times and error rates suggested morphological decomposition for low-frequency inflected words. Yet, both medium- and high-frequency inflected words appeared to possess full-form representations. Despite an overall advantage for the more proficient participants, this pattern was present in both groups. The results indicate that even late exposure to a language can yield such input representations for morphologically complex words that are typical of native speakers.


2011 ◽  
Vol 32 (3) ◽  
pp. 483-498 ◽  
Author(s):  
LUDO VERHOEVEN ◽  
ROB SCHREUDER

ABSTRACTThis study examined to what extent advanced and beginning readers, including dyslexic readers of Dutch, make use of morphological access units in the reading of polymorphemic words. Therefore, experiments were carried out in which the role of singular root form frequency in reading plural word forms was investigated in a lexical decision task with both adults and children. Twenty-three adult readers, 37 8-year-old children from Grade 3, 43 11-year-old children from Grade 6, and 33 11-year-old dyslexic readers were presented with a lexical decision task in which we contrasted plural word forms with a high versus low frequency of the singular root form. For the adults, it was found that the accuracy and speed of lexical decision is determined by the surface frequency of the plural word form. The frequency of the constituent root form played a role as well, but in the low-frequency plural words only. Furthermore, a strong developmental effect regarding the accuracy and speed of reading plural word forms was found. An effect of plural word form frequency on word identification was evidenced in all groups. The singular root form frequency also had an impact of the reading of the plural word forms. In the normal reading and dyslexic children, plurals with a high-frequency singular root form were read more accurately and faster than plurals with a low singular root frequency. It can be concluded that constituent morphemes have an impact on the reading of polymorphemic words. The results can be explained in the light of a word experience model leaving room for morphological constituency to play a role in the lexical access of complex words as a function of reading skill and experience and word and morpheme frequency.


2009 ◽  
Vol 62 (9) ◽  
pp. 1706-1715 ◽  
Author(s):  
Samantha F. McCormick ◽  
Marc Brysbaert ◽  
Kathleen Rastle

On the basis of data from masked priming experiments, it has been argued that an automatic process of decomposition is applied to all morphologically structured stimuli, irrespective of their lexical characteristics (Rastle, Davis, & New, 2004). So far, this claim has been tested only with respect to low-frequency primes and nonword primes. This is a limitation because some models of morphological processing postulate that only high-frequency complex words are recognized as whole forms. Thus, a more stringent test would be to determine whether high-frequency complex words also show evidence of masked priming. We report an experiment that compares masked-priming effects observed when the primes constitute morphologically structured nonwords (e.g., alarmer–ALARM), low-frequency words with a mean frequency of 2 per million (e.g., notional–NOTION), and high-frequency words with a mean frequency of 60 per million (e.g., national–NATION). These three conditions yielded significant and equivalent effects, lending strong support to the notion of a routine form of decomposition that is applied to all morphologically structured stimuli.


2012 ◽  
Vol 20 (03) ◽  
pp. 1250011 ◽  
Author(s):  
SÉBASTIEN BESSET

Noise predictions in acoustic cavities lead to different formulations in low or high frequency ranges. In the case of fast calculations, we propose a mixed formulation based on a finite element mesh including a "high frequency energy degree of freedom" to predict high frequency phenomena. The mesh size is planned for studying low-(medium) frequency range phenomena through a classical finite element method. The same mesh is used to build energy elements to take into account the (medium)-high frequency range phenomena. The method aims at performing low-cost calculations in medium-high frequency ranges using low-frequency-based existing meshes, i.e. without re-meshing the system.


1971 ◽  
Vol 36 (4) ◽  
pp. 527-537 ◽  
Author(s):  
Norman P. Erber

Two types of special hearing aid have been developed recently to improve the reception of speech by profoundly deaf children. In a different way, each special system provides greater low-frequency acoustic stimulation to deaf ears than does a conventional hearing aid. One of the devices extends the low-frequency limit of amplification; the other shifts high-frequency energy to a lower frequency range. In general, previous evaluations of these special hearing aids have obtained inconsistent or inconclusive results. This paper reviews most of the published research on the use of special hearing aids by deaf children, summarizes several unpublished studies, and suggests a set of guidelines for future evaluations of special and conventional amplification systems.


2021 ◽  
Vol 11 (4) ◽  
pp. 1932
Author(s):  
Weixuan Wang ◽  
Qinyan Xing ◽  
Qinghao Yang

Based on the newly proposed generalized Galerkin weak form (GGW) method, a two-step time integration method with controllable numerical dissipation is presented. In the first sub-step, the GGW method is used, and in the second sub-step, a new parameter is introduced by using the idea of a trapezoidal integral. According to the numerical analysis, it can be concluded that this method is unconditionally stable and its numerical damping is controllable with the change in introduced parameters. Compared with the GGW method, this two-step scheme avoids the fast numerical dissipation in a low-frequency range. To highlight the performance of the proposed method, some numerical problems are presented and illustrated which show that this method possesses superior accuracy, stability and efficiency compared with conventional trapezoidal rule, the Wilson method, and the Bathe method. High accuracy in a low-frequency range and controllable numerical dissipation in a high-frequency range are both the merits of the method.


2019 ◽  
Vol 9 (15) ◽  
pp. 3157 ◽  
Author(s):  
O ◽  
Jin ◽  
Choi

In this paper, we propose a compact four-port coplanar antenna for cognitive radio applications. The proposed antenna consists of a coplanar waveguide (CPW)-fed ultra-wideband (UWB) antenna and three inner rectangular loop antennas. The dimensions of the proposed antenna are 42 mm × 50 mm × 0.8 mm. The UWB antenna is used for spectrum sensing and fully covers the UWB spectrum of 3.1–10.6 GHz. The three loop antennas cover the UWB frequency band partially for communication purposes. The first loop antenna for the low frequency range operates from 2.96 GHz to 5.38 GHz. The second loop antenna is in charge of the mid band from 5.31 GHz to 8.62 GHz. The third antenna operates from 8.48 GHz to 11.02 GHz, which is the high-frequency range. A high isolation level (greater than 17.3 dB) is realized among the UWB antenna and three loop antennas without applying any additional decoupling structures. The realized gains of the UWB antenna and three loop antennas are greater than 2.7 dBi and 1.38 dBi, respectively.


2015 ◽  
Vol 655 ◽  
pp. 182-185
Author(s):  
Ke Lan Yan ◽  
Run Hua Fan ◽  
Min Chen ◽  
Kai Sun ◽  
Xu Ai Wang ◽  
...  

The phase structure, and electrical and magnetic properties of La0.7Sr0.3MnO3(LSMO)-xAg (xis the mole ratio,x=0, 0.3, 0.5) composite were investigated. It is found that the sample withx=0 is single phase; the samples withx=0.3 and 0.5 present three phase composite structure of the manganese oxide and Ag. With the increasing of Ag content, the grain size of the samples increases and the grain boundaries transition from fully faceted to partially faceted. The permittivity of spectrum (10 MHz - 1 GHz) and the theoretical simulation reveal that the plasma frequencyfpincrease with Ag content, due to the increasing of free electron concentration, which is further supported by the enhancement of conductivity. While for the permeability (μr'), theμr'decrease with the increasing of Ag content at low frequency range (f< 20 MHz), while at the relative high frequency range (f> 300 MHz), theμr'increased with Ag content. Therefore, the introduction of elemental Ag resulted in a higherμr'at the relative high frequency range.


2007 ◽  
Vol 280-283 ◽  
pp. 919-924
Author(s):  
M.S. Jogad ◽  
V.K. Shrikhande ◽  
A.H. Dyama ◽  
L.A. Udachan ◽  
Govind P. Kothiyal

AC and DC conductivities have been measured by using the real (e¢) and imaginary (e¢¢) parts of the dielectric constant data of glass and glass-ceramics (GC) at different temperatures in the rage 297-642K and in the frequency range 100 Hz to 10 MHz. Using Anderson –Stuart model, we have calculated the activation energy, which is observed to be lower than that of the DC conductivity. The analysis for glass/glass-ceramics indicates that the conductivity variation with frequency exhibits an initial linear region followed by nonlinear region with a maximum in the high-frequency region. The observed frequency dependence of ionic conductivity has been analyzed within the extended Anderson–Stuart model considering both the electrostatic and elastic strain terms. In glass/glassceramic the calculations based on the Anderson-Stuart model agree with the experimental observations in the low frequency region but at higher frequencies there is departure from measured data.


2018 ◽  
Vol 39 (2) ◽  
pp. 198-222
Author(s):  
Miguel Lázaro ◽  
Víctor Illera ◽  
Javier Sainz

AbstractWhether morphological processing of complex words occurs beyond orthographic processing is a matter of intense debate. In this study, morphological processing is examined by presenting complex words (brujería -> brujo –witchcraft -> witch), as well as simple (brujaña->brujo) and complex pseudowords (brujanza ->brujo), as primes in three masked lexical decision tasks. In the first experiment, the three experimental conditions facilitated word recognition in comparison to the control condition, but no differences emerged between them. Given the importance of the surface frequency effect observed, a second experiment was conducted. The results fully replicate those observed in the first one, but this time with low frequency targets. In the third experiment, vowels were removed from the stems of primes to reduce the orthographic overlap between primes and targets and, therefore, the influence of the embedded stem effect. The results show facilitative effects only for complex words. However, paired comparisons show no differences between experimental conditions. The overall results show the central role played by the processing of stems in visual word recognition and are explained in terms of current models of morphological processing.


Sign in / Sign up

Export Citation Format

Share Document