scholarly journals Attentional Modulation of Affective Versus Sensory Processing: Functional Connectivity and a Top-Down Biased Activation Theory of Selective Attention

2010 ◽  
Vol 104 (3) ◽  
pp. 1649-1660 ◽  
Author(s):  
Fabian Grabenhorst ◽  
Edmund T. Rolls

Top-down selective attention to the affective properties of taste stimuli increases activation to the taste stimuli in the orbitofrontal cortex (OFC) and pregenual cingulate cortex (PGC), and selective attention to the intensity of the stimuli increases the activation in the insular taste cortex, but the origin of the top-down attentional biases is not known. Using psychophysiological interaction connectivity analyses, we showed that in the anterior lateral prefrontal cortex (LPFC) at Y = 53 mm the correlation with activity in OFC and PGC seed regions was greater when attention was to pleasantness compared with when attention was to intensity. Conversely, we showed that in a more posterior region of the LPFC at Y = 34 the correlation with activity in the anterior insula seed region was greater when attention was to intensity compared with when attention was to pleasantness. We also showed that correlations between areas in these separate processing streams were dependent on selective attention to affective value versus physical intensity of the stimulus. We then propose a biased activation theory of selective attention to account for the findings and contrast this with a biased competition theory of selective attention.

2021 ◽  
pp. 132-136
Author(s):  
William P. Seeley

Skepticism about neuroaesthetics emerges from a contrast between aesthetic and cognitivist theories of art. Neuroaesthetics represents an aesthetic approach to understanding art. Aesthetic approaches identify the defining features of artworks by their aesthetic features and the affective profile of the experiences they engender. Cognitivist theories, in contrast, define artworks as communicative devices intentionally designed to convey some point, purpose, or meaning. In the article under discussion, the author argues that the conflict between these two views is overblown. He introduces a diagnostic recognition framework for understanding art grounded in a biased competition theory of selective attention. The framework defines artworks as attentional engines intentionally designed to orient perceivers to diagnostic features, including aesthetic features, that carry information about their point, purpose, or meaning. The artistic salience of aesthetic features of a work on this account, consistent with a cognitivist approach, lies in the semantic role they play in the expression of the work’s point, purpose, or meaning.


Neuron ◽  
2021 ◽  
Author(s):  
Jochem van Kempen ◽  
Marc A. Gieselmann ◽  
Michael Boyd ◽  
Nicholas A. Steinmetz ◽  
Tirin Moore ◽  
...  
Keyword(s):  

2012 ◽  
Vol 36 (9) ◽  
pp. 2069-2084 ◽  
Author(s):  
Richard H.A.H. Jacobs ◽  
Remco Renken ◽  
Andre Aleman ◽  
Frans W. Cornelissen
Keyword(s):  

Author(s):  
Jochem van Kempen ◽  
Marc A. Gieselmann ◽  
Michael Boyd ◽  
Nicholas A. Steinmetz ◽  
Tirin Moore ◽  
...  

AbstractSpontaneous fluctuations in cortical excitability influence sensory processing and behavior. These fluctuations, long known to reflect global changes in cortical state, were recently found to be modulated locally within a retinotopic map during spatially selective attention. We found that periods of vigorous (On) and faint (Off) spiking activity, the signature of cortical state fluctuations, were coordinated across brain areas along the visual hierarchy and tightly coupled to their retinotopic alignment. During top-down attention, this interareal coordination was enhanced and progressed along the reverse cortical hierarchy. The extent of local state coordination between areas was predictive of behavioral performance. Our results show that cortical state dynamics are shared across brain regions, modulated by cognitive demands and relevant for behavior.One Sentence SummaryInterareal coordination of local cortical state is retinotopically precise and progresses in a reverse hierarchical manner during selective attention.


2020 ◽  
Vol 8 (3) ◽  
pp. 491-505 ◽  
Author(s):  
Rebecca B. Price ◽  
Adriene M. Beltz ◽  
Mary L. Woody ◽  
Logan Cummings ◽  
Danielle Gilchrist ◽  
...  

On average, anxious patients show altered attention to threat—including early vigilance toward threat and later avoidance of threat—accompanied by altered functional connectivity across brain regions. However, substantial heterogeneity within clinical, neural, and attentional features of anxiety is overlooked in typical group-level comparisons. We used a well-validated method for data-driven parsing of neural connectivity to reveal connectivity-based subgroups among 60 adults with transdiagnostic anxiety. Subgroups were externally compared on attentional patterns derived from independent behavioral measures. Two subgroups emerged. Subgroup A (68% of patients) showed stronger executive network influences on sensory processing regions and a paradigmatic “vigilance–avoidance” pattern on external behavioral measures. Subgroup B was defined by a larger number of limbic influences on sensory regions and exhibited a more atypical and inconsistent attentional profile. Neural connectivity-based categorization revealed an atypical, limbic-driven pattern of connectivity in a subset of anxious patients that generalized to atypical patterns of selective attention.


2010 ◽  
Vol 22 (6) ◽  
pp. 1224-1234 ◽  
Author(s):  
Aaron M. Rutman ◽  
Wesley C. Clapp ◽  
James Z. Chadick ◽  
Adam Gazzaley

Selective attention confers a behavioral benefit on both perceptual and working memory (WM) performance, often attributed to top–down modulation of sensory neural processing. However, the direct relationship between early activity modulation in sensory cortices during selective encoding and subsequent WM performance has not been established. To explore the influence of selective attention on WM recognition, we used electroencephalography to study the temporal dynamics of top–down modulation in a selective, delayed-recognition paradigm. Participants were presented with overlapped, “double-exposed” images of faces and natural scenes, and were instructed to either remember the face or the scene while simultaneously ignoring the other stimulus. Here, we present evidence that the degree to which participants modulate the early P100 (97–129 msec) event-related potential during selective stimulus encoding significantly correlates with their subsequent WM recognition. These results contribute to our evolving understanding of the mechanistic overlap between attention and memory.


2020 ◽  
Author(s):  
Fuyin Yang ◽  
Hao Zhu ◽  
Lingfang Yu ◽  
Weihong Lu ◽  
Chen Zhang ◽  
...  

AbstractsAuditory verbal hallucinations (AVHs) are one of the most pronounced symptoms that manifest the underlying mechanisms of deficits in schizophrenia. Cognitive models postulate that malfunctioned source monitoring incorrectly weights the top-down prediction and bottom-up sensory processing and causes hallucinations. Here, we investigate the featural-temporal characteristics of source monitoring in AVHs. Schizophrenia patients with and without AVHs, and healthy controls identified target tones in noise at the end of tone sequences. Predictions of different timescales were manipulated by either an alternating pattern in the preceding tone sequences, or a repetition between the target tone and the tone immediately before. The sensitivity index, d’, was obtained to assess the modulation of predictions on tone identification. We found that patients with AVHs showed higher d’ when the target tones conformed to the long-term regularity of alternating pattern in the preceding tone sequence than that when the targets were inconsistent with the pattern. Whereas, the short-term regularity of repetitions modulated the tone identification in patients without AVHs. Predictions did not influence tone identification in healthy controls. These findings suggest that malfunctioned source monitoring in AVHs heavily weights predictions to form incorrect perception. The weighting function in source monitoring can extend to the process of basic tonal features, and predictions at multiple timescales differentially modulate perception in different clinical populations. These collaboratively reveal the featural and temporal characteristics of weighting function in source monitoring of AVHs and suggest that the malfunctioned interaction between top-down and bottom-up processes might underlie the development of auditory hallucinations.HighlightsMalfunctioned source monitoring incorrectly weights the top-down prediction and bottom-up sensory processing underlie pathogenesis of auditory verbal hallucinations in schizophrenia.The weighting function in top-down predictions and bottom-up sensory processing can extend to tonal features.Predictions at multiple timescales differentially modulate perception in different clinical schizophrenia populations.


2019 ◽  
Vol 15 (1) ◽  
pp. e1006611 ◽  
Author(s):  
Wayne Adams ◽  
James N. Graham ◽  
Xuchen Han ◽  
Hermann Riecke

Sign in / Sign up

Export Citation Format

Share Document