scholarly journals The calcium-binding protein parvalbumin modulates the firing 1 properties of the reticular thalamic nucleus bursting neurons

2013 ◽  
Vol 109 (11) ◽  
pp. 2827-2841 ◽  
Author(s):  
Lavinia Albéri ◽  
Alessandra Lintas ◽  
Robert Kretz ◽  
Beat Schwaller ◽  
Alessandro E. P. Villa

The reticular thalamic nucleus (RTN) of the mouse is characterized by an overwhelming majority of GABAergic neurons receiving afferences from both the thalamus and the cerebral cortex and sending projections mainly on thalamocortical neurons. The RTN neurons express high levels of the “slow Ca2+ buffer” parvalbumin (PV) and are characterized by low-threshold Ca2+ currents, IT. We performed extracellular recordings in ketamine/xylazine anesthetized mice in the rostromedial portion of the RTN. In the RTN of wild-type and PV knockout (PVKO) mice we distinguished four types of neurons characterized on the basis of their firing pattern: irregular firing (type I), medium bursting (type II), long bursting (type III), and tonically firing (type IV). Compared with wild-type mice, we observed in the PVKOs the medium bursting (type II) more frequently than the long bursting type and longer interspike intervals within the burst without affecting the number of spikes. This suggests that PV may affect the firing properties of RTN neurons via a mechanism associated with the kinetics of burst discharges. Cav3.2 channels, which mediate the IT currents, were more localized to the somatic plasma membrane of RTN neurons in PVKO mice, whereas Cav3.3 expression was similar in both genotypes. The immunoelectron microscopy analysis showed that Cav3.2 channels were localized at active axosomatic synapses, thus suggesting that the differential localization of Cav3.2 in the PVKOs may affect bursting dynamics. Cross-correlation analysis of simultaneously recorded neurons from the same electrode tip showed that about one-third of the cell pairs tended to fire synchronously in both genotypes, independent of PV expression. In summary, PV deficiency does not affect the functional connectivity between RTN neurons but affects the distribution of Cav3.2 channels and the dynamics of burst discharges of RTN cells, which in turn regulate the activity in the thalamocortical circuit.

2015 ◽  
Vol 113 (6) ◽  
pp. 1712-1726 ◽  
Author(s):  
Miroslav N. Nenov ◽  
Filippo Tempia ◽  
Larry Denner ◽  
Kelly T. Dineley ◽  
Fernanda Laezza

Early cognitive impairment in Alzheimer's disease (AD) correlates with medial temporal lobe dysfunction, including two areas essential for memory formation: the entorhinal cortex and dentate gyrus (DG). In the Tg2576 animal model for AD amyloidosis, activation of the peroxisome proliferator-activated receptor-gamma (PPARγ) with rosiglitazone (RSG) ameliorates hippocampus-dependent cognitive impairment and restores aberrant synaptic activity at the entorhinal cortex to DG granule neuron inputs. It is unknown, however, whether intrinsic firing properties of DG granule neurons in these animals are affected by amyloid-β pathology and if they are sensitive to RSG treatment. Here, we report that granule neurons from 9-mo-old wild-type and Tg2576 animals can be segregated into two cell types with distinct firing properties and input resistance that correlate with less mature type I and more mature type II neurons. The DG type I cell population was greater than type II in wild-type littermates. In the Tg2576 animals, the type I and type II cell populations were nearly equal but could be restored to wild-type levels through cognitive enhancement with RSG. Furthermore, Tg2576 cell firing frequency and spike after depolarization were decreased in type I and increased in type II cells, both of which could also be restored to wild-type levels upon RSG treatment. That these parameters were restored by PPARγ activation emphasizes the therapeutic value of RSG against early AD cognitive impairment.


Author(s):  
G. D. Gagne ◽  
M. F. Miller ◽  
D. A. Peterson

Experimental infection of chimpanzees with non-A, non-B hepatitis (NANB) or with delta agent hepatitis results in the appearance of characteristic cytoplasmic alterations in the hepatocytes. These alterations include spongelike inclusions (Type I), attached convoluted membranes (Type II), tubular structures (Type III), and microtubular aggregates (Type IV) (Fig. 1). Type I, II and III structures are, by association, believed to be derived from endoplasmic reticulum and may be morphogenetically related. Type IV structures are generally observed free in the cytoplasm but sometimes in the vicinity of type III structures. It is not known whether these structures are somehow involved in the replication and/or assembly of the putative NANB virus or whether they are simply nonspecific responses to cellular injury. When treated with uranyl acetate, type I, II and III structures stain intensely as if they might contain nucleic acids. If these structures do correspond to intermediates in the replication of a virus, one might expect them to contain DNA or RNA and the present study was undertaken to explore this possibility.


2015 ◽  
Vol 24 (4) ◽  
pp. 523-526 ◽  
Author(s):  
Yoshihiro Maruo ◽  
Mahdiyeh Behnam ◽  
Shinichi Ikushiro ◽  
Sayuri Nakahara ◽  
Narges Nouri ◽  
...  

Background: Crigler–Najjar syndrome type I (CN-1) and type II (CN-2) are rare hereditary unconjugated hyperbilirubinemia disorders. However, there have been no reports regarding the co-existence of CN-1 and CN-2 in one family. We experienced a case of an Iranian family that included members with either CN-1 or CN-2. Genetic analysis revealed a mutation in the bilirubin UDP-glucuronosyltransferase (UGT1A1) gene that resulted in residual enzymatic activity.Case report: The female proband developed severe hyperbilirubinemia [total serum bilirubin concentration (TB) = 34.8 mg/dL] with bilirubin encephalopathy (kernicterus) and died after liver transplantation. Her family history included a cousin with kernicterus (TB = 30.0 mg/dL) diagnosed as CN-1. Her great grandfather (TB unknown) and uncle (TB = 23.0 mg/dL) developed jaundice, but without any treatment, they remained healthy as CN-2. Results: The affected cousin was homozygous for a novel frameshift mutation (c.381insGG, p.C127WfsX23). The affected uncle was compound heterozygous for p.C127WfsX23 and p.V225G linked with A(TA)7TAA. p.V225G-UGT1A1 reduced glucuronidation activity to 60% of wild-type. Thus, linkage of A(TA)7TAA and p.V225G might reduce UGT1A1 activity to 18%–36 % of the wild-type. Conclusion: Genetic and in vitro expression analyses are useful for accurate genetic counseling for a family with a history of both CN-1 and CN-2. Abbreviations: CN-1: Crigler–Najjar syndrome type I; CN-2: Crigler–Najjar syndrome type II; GS: Gilbert syndrome; UGT1A1: bilirubin UDP-glucuronosyltransferase; WT: Wild type; TB: total serum bilirubin.


2020 ◽  
pp. 1-15
Author(s):  
Zhiwei Yuan ◽  
Wen Guo ◽  
Dan Lyu ◽  
Yuanlin Sun

Abstract The filter-feeding organ of some extinct brachiopods is supported by a skeletal apparatus called the brachidium. Although relatively well studied in Atrypida and Athyridida, the brachidial morphology is usually neglected in Spiriferida. To investigate the variations of brachidial morphology in Spiriferida, 65 species belonging to eight superfamilies were analyzed. Based on the presence/absence of the jugal processes and normal/modified primary lamellae of the spiralia, four types of brachidium are recognized. Type-I (with jugal processes) and Type-II (without jugal processes), both having normal primary lamellae, could give rise to each other by losing/re-evolving the jugal processes. Type-III, without jugal processes, originated from Type-II through evolution of the modified lateral-convex primary lamellae, and it subsequently gave rise to Type-IV by evolving the modified medial-convex primary lamellae. The evolution of brachidia within individual evolutionary lineages must be clarified because two or more types can be present within a single family. Type-III and Type-IV are closely associated with the prolongation of the crura, representing innovative modifications of the feeding apparatus in response to possible shift in the position of the mouth towards the anterior, allowing for more efficient feeding on particles entering the mantle cavity from the anterior gape. Meanwhile, the modified primary lamellae adjusted/regulated the feeding currents. The absence of spires in some taxa with Type-IV brachidium might suggest that they developed a similar lophophore to that in some extant brachiopods, which can extend out of the shell.


2007 ◽  
Vol 56 (8) ◽  
pp. 1005-1010 ◽  
Author(s):  
M. Sarkar-Tyson ◽  
J. E. Thwaite ◽  
S. V. Harding ◽  
S. J. Smither ◽  
P. C. F. Oyston ◽  
...  

Burkholderia pseudomallei is the causative agent of melioidosis, an infectious disease of humans and animals. Gene clusters which encode capsular polysaccharide (type I O-PS) and LPS (type II O-PS), both of which play roles in virulence, have previously been identified. Here, the identification of two further putative clusters, type III O-PS and type IV O-PS, is reported. Mice challenged with type III O-PS or type IV O-PS mutants showed increased mean times to death (7.8 and 11.6 days) compared to those challenged with wild-type B. pseudomallei (3 days). To investigate the possible roles of polysaccharides in protection, mice were immunized with killed cells of wild-type B. pseudomallei or killed cells of B. pseudomallei with mutations in the O antigen, capsular polysaccharide, type III O-PS or type IV O-PS gene clusters. Immunization with all polysaccharide mutant strains resulted in delayed time to death compared to the naïve controls, following challenge with wild-type B. pseudomallei strain K96243. However, immunization with killed polysaccharide mutant strains conferred different degrees of protection, demonstrating the immunological importance of the polysaccharide clusters on the surface of B. pseudomallei.


1996 ◽  
Vol 75 (4) ◽  
pp. 1411-1431 ◽  
Author(s):  
K. A. Davis ◽  
J. Ding ◽  
T. E. Benson ◽  
H. F. Voigt

1. The electrophysiological responses of single units in the dorsal cochlear nucleus of unanesthetized decerebrate Mongolian gerbil (Meriones unguiculatus) were recorded. Units were classified according to the response map scheme of Evans and Nelson as modified by Young and Brownell, Young and Voigt, and Shofner and Young. Type II units have a V-shaped excitatory response map similar to typical auditory nerve tuning curves but little or no spontaneous activity (SpAc < 2.5 spikes/s) and little or no response to noise. Type I/III units also have a V-shaped excitatory map and SpAc < 2.5 spikes/s, but have an excitatory response to noise. Type III units have a V-shaped excitatory map with inhibitory sidebands, SpAc > 2.5 spikes/s, and an excitatory response to noise. Type IV-T units typically also have a V-shaped excitatory map with inhibitory sidebands, but have a highly nonmonotonic rate versus level response to best frequency (BF) tones like type IV units, SpAc > 2.5 spikes/s, and an excitatory response to noise. Type IV units have a predominantly inhibitory response map above an island of excitation of BF, SpAc > 2.5 spikes/s, and an excitatory response to noise. We present results for 133 units recorded with glass micropipette electrodes. The purpose of this study was to establish a normative response map data base in this species for ongoing structure/function and correlation studies. 2. The major types of units (type II, type I/III, type III, type IV-T, and type IV) found in decerebrate cat are found in decerebrate gerbil. However, the percentage of type II (7.5%) and type IV (11.3%) units encountered are smaller and the percentage of type III (62.4%) units is larger in decerebrate gerbil than in decerebrate cat. In comparison, Shofner and Young found 18.5% type II units, 30.6% type IV units, and 23.1% type III units using metal electrodes. 3. Two new unit subtypes are described in gerbil: type III-i and type IV-i units. Type III-i units are similar to type III units except that type III-i units are inhibited by low levels of noise and excited by high levels of noise whereas type III units have strictly excitatory responses to noise. Type IV-i units are similar to type IV units except that type IV-i units are excited by low levels of noise and become inhibited by high levels of noise whereas type IV units have strictly excitatory responses to noise. Type III-i units are approximately 30% of the type III population and type IV-i units are approximately 50% of the type IV population. 4. On the basis of the paucity of classic type II units and the reciprocal responses to broadband noise of type III-i and type IV-i units, we postulate that some gerbil type III-i units are the same cell type and have similar synaptic connections as cat type II units. 5. Type II and type I/III units are distinguished from one another on the basis of both their relative noise response, rho, and the normalized slope of the BF tone rate versus level functions beyond the first maximum. Previously, type II units were defined to be those nonspontaneously active units with rho values < 0.3 where rho is defined as the ratio of the maximum noise response minus spontaneous rate to the maximum BF tone response minus spontaneous rate. In the gerbil, the average rho value for type II units is 0.25, although a few values are > 0.3, and the rate-level curves are consistently nonmonotonic with normalized slopes steeper than than -0.007/dB. The average rho value for type I/III units is 0.54, although a few values are < 0.3, and the rate-level curves tend to saturate with slopes shallower than -0.006/dB. In general, the response properties of type II units recorded in gerbil are similar to those recorded in decerebrate cat. 6. In comparison to decerebrate cat, the lower percentage of type IV units recorded in decerebrate gerbil may be due to a species difference (a reduced number of type II units in gerbil) or an electrode bias.


1999 ◽  
Vol 82 (5) ◽  
pp. 2092-2107 ◽  
Author(s):  
Harumitsu Hirata ◽  
James W. Hu ◽  
David A. Bereiter

Corneal-responsive neurons were recorded extracellularly in two regions of the spinal trigeminal nucleus, subnucleus interpolaris/caudalis (Vi/Vc) and subnucleus caudalis/upper cervical cord (Vc/C1) transition regions, from methohexital-anesthetized male rats. Thirty-nine Vi/Vc and 26 Vc/C1 neurons that responded to mechanical and electrical stimulation of the cornea were examined for convergent cutaneous receptive fields, responses to natural stimulation of the corneal surface by CO2 pulses (0, 30, 60, 80, and 95%), effects of morphine, and projections to the contralateral thalamus. Forty-six percent of mechanically sensitive Vi/Vc neurons and 58% of Vc/C1 neurons were excited by CO2 stimulation. The evoked activity of most cells occurred at 60% CO2 after a delay of 7–22 s. At the Vi/Vc transition three response patterns were seen. Type I cells ( n = 11) displayed an increase in activity with increasing CO2 concentration. Type II cells ( n = 7) displayed a biphasic response, an initial inhibition followed by excitation in which the magnitude of the excitatory phase was dependent on CO2 concentration. A third category of Vi/Vc cells (type III, n = 3) responded to CO2 pulses only after morphine administration (>1.0 mg/kg). At the Vc/C1 transition, all CO2-responsive cells ( n = 15) displayed an increase in firing rates with greater CO2 concentration, similar to the pattern of type I Vi/Vc cells. Comparisons of the effects of CO2 pulses on Vi/Vc type I units, Vi/Vc type II units, and Vc/C1 corneal units revealed no significant differences in threshold intensity, stimulus encoding, or latency to sustained firing. Morphine (0.5–3.5 mg/kg iv) enhanced the CO2-evoked activity of 50% of Vi/Vc neurons tested, whereas all Vc/C1 cells were inhibited in a dose-dependent, naloxone-reversible manner. Stimulation of the contralateral posterior thalamic nucleus antidromically activated 37% of Vc/C1 corneal units; however, no effective sites were found within the ventral posteromedial thalamic nucleus or nucleus submedius. None of the Vi/Vc corneal units tested were antidromically activated from sites within these thalamic regions. Corneal-responsive neurons in the Vi/Vc and Vc/C1 regions likely serve different functions in ocular nociception, a conclusion reflected more by the difference in sensitivity to analgesic drugs and efferent projection targets than by the CO2 stimulus intensity encoding functions. Collectively, the properties of Vc/C1 corneal neurons were consistent with a role in the sensory-discriminative aspects of ocular pain due to chemical irritation. The unique and heterogeneous properties of Vi/Vc corneal neurons suggested involvement in more specialized ocular functions such as reflex control of tear formation or eye blinks or recruitment of antinociceptive control pathways.


2018 ◽  
Vol 15 (2S) ◽  
pp. 153-159
Author(s):  
E. S. Pirogova ◽  
O. L. Fabrikantov ◽  
S. I. Nikolashin

Purpose: to study the structure of the swelling lens, the dependence of its anatomical parameters on the nucleus sizes and density, patients’ age.Patients and methods. 52 patients with intumescent mature cataract were examined. All patients underwent phacoemulsification with a two-stage continuous circular capsulorhexis. After the 2–2.5 mm capsulorhexis had been created, the liquid lenticular masses were removed from the anterior and posterior lens compartment with the aspiration/irrigation system. Visually we determined the size of the nucleus, its color and density according to Buratto’s classification.Results. When performing this work 4 types of the swelling lens structure were revealed. Type I — a small emerging white nucleus with large amount of liquid lenticular masses in the anterior and posterior lens compartment, II degree of density according to Buratto’s classification. The mean age was 49.09 ± 3.19 years old. The related ophthalmic diseases accounted for 36.4%. Type II — a large white nucleus with the presence of liquefied lenticular masses in the anterior and posterior lens compartment. III degree of density according to Buratto’s classification. The mean age was 71.00 ± 1.92 years old. Associated diseases — 84.6%. Type III — a large brown nucleus with the presence of liquefied lenticular masses in the anterior and posterior lens compartment. IV degree of density according to Buratto’s classification. The mean age was 75.84 ± 1.46 years old. Associated diseases — 100%. Type IV — a small, very dense, brown nucleus with liquid lenticular masses. V degree of density according to Buratto’s classification. The mean age was 77.33 ± 2.49 years old. Associated diseases — 100%.Conclusion. 4 types of lens structure in intumescent cataract were described depending on the nucleus size, density, the amount of the lenticular masses. By means of UBM method, it was shown that intumescent cataract is accompanied with the alterations of the ocular anterior segment parameters, which depend on the type of lens structure. It was revealed that the types of swelling lens structure are directly connected to the patients’ age: mean age of patients with type I — 49.09 ± 3.19 years old, with type II — 71.00 ± 1.92, with type III — 75.84 ± 1.46, with type IV — 77.33 ± 2.49 years old. 


Author(s):  
Arumugam P. ◽  
Swathandran Hamsavardhini ◽  
Ravishankar J.

Background: ABO discrepancies occur whenever the results of red cell grouping and serum grouping are in disagreement. The reasons for discrepancies both clinical and technical have to be sorted out. Further analysis is essential to resolve such discrepancies. If discrepancies are encountered, the interpretation of the ABO grouping has to be delayed until the same has been resolved. The aim of the study was to resolve ABO discrepancies encountered, by serological work up.Methods: All cases of discrepant samples received between August 2014 and May 2016 at the Department of Transfusion Medicine, The Tamilnadu Dr. MGR Medical University, Chennai, India were analyzed to determine the etiology by serological workup.Results: A total of twenty-one samples were analyzed and resolved. Fifteen cases of Type IV discrepancy, two cases of Type II discrepancy, one case Type III discrepancy, one case Type I discrepancy and two cases of technical errors were identified.Conclusions: ABO discrepancies can be resolved serologically if properly worked up. As ABO blood grouping is indispensible in blood transfusion service, it is imperative to resolve such discrepancies before transfusion.


Sign in / Sign up

Export Citation Format

Share Document