scholarly journals Functional segregation of retinal ganglion cell projections to the optic tectum of rainbow trout

2015 ◽  
Vol 114 (5) ◽  
pp. 2703-2717 ◽  
Author(s):  
Iñigo Novales Flamarique ◽  
Matt Wachowiak

The interpretation of visual information relies on precise maps of retinal representation in the brain coupled with local circuitry that encodes specific features of the visual scenery. In nonmammalian vertebrates, the main target of ganglion cell projections is the optic tectum. Although the topography of retinotectal projections has been documented for several species, the spatiotemporal patterns of activity and how these depend on background adaptation have not been explored. In this study, we used a combination of electrical and optical recordings to reveal a retinotectal map of ganglion cell projections to the optic tectum of rainbow trout and characterized the spatial and chromatic distribution of ganglion cell fibers coding for increments (ON) and decrements (OFF) of light. Recordings of optic nerve activity under various adapting light backgrounds, which isolated the input of different cone mechanisms, yielded dynamic patterns of ON and OFF input characterized by segregation of these two fiber types. Chromatic adaptation decreased the sensitivity and response latency of affected cone mechanisms, revealing their variable contributions to the ON and OFF responses. Our experiments further demonstrated restricted input from a UV cone mechanism to the anterolateral optic tectum, in accordance with the limited presence of UV cones in the dorsotemporal retina of juvenile rainbow trout. Together, our findings show that retinal inputs to the optic tectum of this species are not homogeneous, exhibit highly dynamic activity patterns, and are likely determined by a combination of biased projections and specific retinal cell distributions and their activity states.


Development ◽  
1980 ◽  
Vol 55 (1) ◽  
pp. 77-92
Author(s):  
S. C. Sharma ◽  
J. G. Hollyfield

The specification of central connexions of retinal ganglion cells was studied in Xenopus laevis. In one series of experiments, the right eye primordium was rotated 180° at embryonic stages 24–32. In the other series, the left eye was transplanted into the right orbit, and vice versa, with either 0° or 180° rotation. After metamorphosis the visual projections from the operated eye to the contralateral optic tectum were mapped electrophysiologically and compared with the normal retinotectal map. In all cases the visual projection map was rotated through the same angle as was indicated by the position of the choroidal fissure. The left eye exchanged into the right orbit retained its original axes and projected to the contralateral tectum. These results suggest that retinal ganglion cell connexions are specified before stage 24.



1987 ◽  
Vol 58 (3) ◽  
pp. 496-509 ◽  
Author(s):  
A. Lev-Tov ◽  
M. Tal

The structure and activity patterns of the anterior and posterior heads of the guinea pig digastric muscle (DG) were studied in ketamine-anesthetized guinea pigs. Collagen staining of longitudinal and transverse sections of the muscle revealed that the guinea pig DG is comprised of a unicompartmental anterior head (ADG) and a multicompartmental posterior head (PDG). The two heads are separated by a thin tendinous inscription that, unlike the intermediate tendon of the DG in humans, is not attached to the hyoid bone. The motor nuclei of the guinea pig DG were reconstructed using retrograde labeling with horseradish peroxidase. The motoneurons of the ADG were clustered in a longitudinal column within the trigeminal motor nucleus. The motoneurons of the PDG were segregated into two clusters within the facial motor nucleus. The cross-sectional areas of the ADG and PDG motoneuron somata exhibited unimodal frequency distributions and the average soma area was larger for ADG than PDG motoneurons. Histochemical characterization of ADG and PDG revealed that the two muscle heads contained the three main histochemical types of muscle fibers identified in limb muscles. The frequency distribution of fiber types in ADG and PDG were not significantly different. Both muscle heads were predominantly fast with slow oxidative fibers accounting for only 1.1 and 0.3% of the fibers in narrow dorsal regions of ADG and PDG, respectively, and 13.6 and 12.9% in the more ventral regions of ADG and PDG, respectively. Simultaneous recordings of EMGs from the ADG and PDG were carried out during spontaneously occurring rhythmical jaw movements. These recordings revealed a high degree of synchrony between the activities of the two heads, although differences were observed in the onset and duration of the EMG bursts. Activity in the PDG preceded activity in the ADG in most of the rhythmical cycles and persisted longer. The differences in latencies of time-locked EMGs evoked in the ADG and PDG by four-pulse cortical stimulation were much smaller than those observed between the activity bursts of the two heads during rhythmical jaw movements. It is suggested that the early activity in the PDG is accounted for by shorter central conduction times in the pathways onto it and/or by higher recruitability of its motor units. The early activity in PDG may serve to optimize the location of ADG on its length-tension curve prior to and during the active state.



2001 ◽  
Vol 18 (4) ◽  
pp. 559-570 ◽  
Author(s):  
B.E. REESE ◽  
M.A. RAVEN ◽  
K.A. GIANNOTTI ◽  
P.T. JOHNSON

The present study has examined the emergence of cholinergic stratification within the developing inner plexiform layer (IPL), and the effect of ablating the cholinergic amacrine cells on the formation of other stratifications within the IPL. The population of cholinergic amacrine cells in the ferret's retina was identified as early as the day of birth, but their processes did not form discrete strata until the end of the first postnatal week. As development proceeded over the next five postnatal weeks, so the positioning of the cholinergic strata shifted within the IPL toward the outer border, indicative of the greater ingrowth and elaboration of processes within the innermost parts of the IPL. To examine whether these cholinergic strata play an instructive role upon the development of other stratifications which form within the IPL, one-week-old ferrets were treated with l-glutamate in an attempt to ablate the population of cholinergic amacrine cells. Such treatment was shown to be successful, eliminating all of the cholinergic amacrine cells as well as the alpha retinal ganglion cells in the central retina. The remaining ganglion cell classes as well as a few other retinal cell types were partially reduced, while other cell types were not affected, and neither retinal histology nor areal growth was compromised in these ferrets. Despite this early loss of the cholinergic amacrine cells, which are eliminated within 24 h, other stratifications within the IPL formed normally, as they do following early elimination of the entire ganglion cell population. While these cholinergic amacrine cells are present well before other cell types have differentiated, apparently neither they, nor the ganglion cells, play a role in determining the depth of stratification for other retinal cell types.



1992 ◽  
Vol 9 (3-4) ◽  
pp. 389-398 ◽  
Author(s):  
Luiz R. G. Britto ◽  
Dȃnia E. Hamassaki-Britto

AbstractA small number of enkephalin-like immunoreactive cells were observed in the ganglion cell layer of the pigeon retina. Many of these neurons were identified as ganglion cells, since they were retrogradely labeled after injections of fluorescent latex microspheres in the contralateral optic tectum. These ganglion cells were mainly distributed in the inferior retina, and their soma sizes ranged from 12–26 μm in the largest axis. The enkephalin-containing ganglion cells appear to represent only a very small percentage of the ganglion cells projecting to the optic tectum (less than 0.1%). Two to 7 weeks after removal of the neural retina, there was an almost complete elimination of an enkephalin-like immunoreactive plexus in layer 3 of the contralateral, rostrodorsal optic tectum. These data provide evidence for the existence of a population of enkephalinergic retinal ganglion cells with projections to the optic tectum.



1998 ◽  
Vol 201 (10) ◽  
pp. 1659-1671 ◽  
Author(s):  
L Hammond ◽  
J D Altringham ◽  
C S Wardle

Strain and activity patterns were determined during slow steady swimming (tailbeat frequency 1.5-2.5 Hz) at three locations on the body in the slow myotomal muscle of rainbow trout Oncorhynchus mykiss using sonomicrometry and electromyography. Strain was independent of tailbeat frequency over the range studied and increased significantly from +/-3.3 % l0 at 0.35BL to +/-6 % at 0.65BL, where l0 is muscle resting length and BL is total body length. Muscle activation occurred significantly later in the strain cycle at 0.35BL (phase shift 59 degrees) than at 0.65BL (30 degrees), and the duration of activity was significantly longer (211 degrees at 0.35BL and 181 degrees at 0.65BL). These results differ from those of previous studies. The results have been used to simulate in vivo activity in isolated muscle preparations using the work loop technique. Preparations from all three locations generated net positive power under in vivo conditions, but the negative power component increased from head to tail. Both kinematically, and in the way its muscle functions to generate hydrodynamic thrust, the rainbow trout appears to be intermediate between anguilliform swimmers such as the eel, which generate thrust along their entire body length, and carangiform fish (e.g. saithe Pollachius virens), which generate thrust primarily at the tail blade.



Development ◽  
1998 ◽  
Vol 125 (6) ◽  
pp. 1059-1066 ◽  
Author(s):  
D.K. Waid ◽  
S.C. McLoon

The different retinal cell types arise during vertebrate development from a common pool of progenitor cells. The mechanisms responsible for determining the fate of individual retinal cells are, as yet, poorly understood. Ganglion cells are one of the first cell types to be produced in the developing vertebrate retina and few ganglion cells are produced late in development. It is possible that, as the retina matures, the cellular environment changes such that it is not conducive to ganglion cell determination. The present study showed that older retinal cells secrete a factor that inhibits the production of ganglion cells. This was shown by culturing younger retinal cells, the test population, adjacent to various ages of older retinal cells. Increasingly older retinal cells, up to embryonic day 9, were more effective at inhibiting production of ganglion cells in the test cell population. Ganglion cell production was restored when ganglion cells were depleted from the older cell population. This suggests that ganglion cells secrete a factor that actively prevents cells from choosing the ganglion cell fate. This factor appeared to be active in medium conditioned by older retinal cells. Analysis of the conditioned medium established that the factor was heat stable and was present in the <3 kDa and >10 kDa fractions. Previous work showed that the neurogenic protein, Notch, might also be active in blocking production of ganglion cells. The present study showed that decreasing Notch expression with an antisense oligonucleotide increased the number of ganglion cells produced in a population of young retinal cells. Ganglion cell production, however, was still inhibited in cultures using antisense oligonucleotide to Notch in medium conditioned by older retinal cells. This suggests that the factor secreted by older retinal cells inhibits ganglion cell production through a different pathway than that mediated by Notch.



1996 ◽  
Vol 76 (3) ◽  
pp. 1958-1967 ◽  
Author(s):  
B. N. Smith ◽  
F. E. Dudek

1. Spontaneous postsynaptic currents (PSCs) were examined in the basolateral amygdala using whole cell patch-clamp recordings in coronal slices (400 microns) from young rats (postnatal day 6-25). In most cells, Cs+ was used in the electrode to block putative voltage-activated K(+)-currents. Both inward and outward spontaneous PSCs were examined. 2. The alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptor antagonist, 6,7-nitroquinoxaline-2,3-dione (DNQX) blocked all inward PSCs, which reversed near 0 mV. They therefore were considered to be glutamate-mediated excitatory postsynaptic currents (EPSCs). Averaged EPSCs had a rapid 10-90% rise time (1.0 +/- 0.04 ms; mean +/- SD) and monoexponential decay (tau = 3.6 +/- 0.18 ms) at potentials negative to about -50 mV. Above this potential, a second, slower time constant (tau 1 = 41 +/- 4.5 ms at -30 mV), accounting for 10-30% of the total EPSC amplitude was resolved in 8 of 10 cells examined. The slower decay time constant was sensitive to the N-methyl-D-aspartate (NMDA)-receptor antagonist, DL-2-amino-5-phosphonovaleric acid (AP5) and therefore probably was due to activation of NMDA receptors. 3. The gamma-aminobutyric acid-A (GABAA) antagonist, bicuculline, blocked all outward PSCs, which reversed near -70 mV. They therefore were considered to be GABA-mediated inhibitory postsynaptic currents (IPSCs). Averaged IPSCs displayed rapid 10-90% rise times (1.0 +/- 0.03 ms) and monoexponential decay time constants (tau = 5.16 +/- 0.14 ms). 4. Tetrodotoxin (TTX) reduced the frequency of synaptic activity and eliminated the largest PSCs, thus reducing slightly the mean EPSC and IPSC amplitude. Most cells received bursts of spontaneous IPSCs and/or EPSCs (30-68 Hz lasting 0.5-6 s), which were also TTX sensitive. The TTX data suggest that the somata of the cells responsible for the largest PSCs and the PSC bursts were contained within the slice. 5. In addition to blocking EPSCs, DNQX blocked the bursts of IPSCs, but not all individual IPSCs. DNQX had similar effects as TTX on the bursts and frequency of the IPSCs. 6. Bicuculline enhanced spontaneous EPSC frequency (231 +/- 90%). Much of this increase was due to an increase in the bursts of EPSCs. 7. Neurons in the basolateral amygdala therefore appear to receive both excitatory (glutamatergic) and inhibitory (GABAergic) synaptic input from local neurons. The activity of the neurons responsible for these inputs are themselves largely regulated by glutamatergic and GABAergic inputs. The relevance of this local circuitry to seizures and epilepsy is discussed briefly.



2011 ◽  
Vol 2011 ◽  
pp. 1-2 ◽  
Author(s):  
Ivanka Stamova ◽  
Haydar Akca ◽  
Gani Stamov


Sign in / Sign up

Export Citation Format

Share Document