scholarly journals Phasic and Tonic Patterns of Locus Coeruleus Output Differentially Modulate Sensory Network Function in the Awake Rat

2011 ◽  
Vol 105 (1) ◽  
pp. 69-87 ◽  
Author(s):  
David M. Devilbiss ◽  
Barry D. Waterhouse

Neurons of the nucleus locus coeruleus (LC) discharge with phasic bursts of activity superimposed on highly regular tonic discharge rates. Phasic bursts are elicited by bottom-up input mechanisms involving novel/salient sensory stimuli and top-down decision making processes; whereas tonic rates largely fluctuate according to arousal levels and behavioral states. Although it is generally believed that these two modes of activity differentially modulate information processing in LC targets, the unique role of phasic versus tonic LC output on signal processing in cells, circuits, and neural networks of waking animals is not well understood. In the current study, simultaneous recordings of individual neurons within ventral posterior medial thalamus and barrel field cortex of conscious rats provided evidence that each mode of LC output produces a unique modulatory impact on single neuron responsiveness to sensory-driven synaptic input and representations of sensory information across ensembles of simultaneously recorded cells. Each mode of LC activation specifically modulated the relationship between sensory-stimulus intensity and the subsequent responses of individual neurons and neural ensembles. Overall these results indicate that phasic versus tonic modes of LC discharge exert fundamentally different modulatory effects on target neuronal circuits within the rodent trigeminal somatosensory system. As such, each mode of LC output may differentially influence signal processing as a means of optimizing behaviorally relevant neural computations within this sensory network. Likely the ability of the LC system to differentially regulate neural responses and local circuit operations according to behavioral demands extends to other brain regions including those involved in higher cognitive functions.

2021 ◽  
Vol 118 (52) ◽  
pp. e2112212118
Author(s):  
Jiseok Lee ◽  
Joanna Urban-Ciecko ◽  
Eunsol Park ◽  
Mo Zhu ◽  
Stephanie E. Myal ◽  
...  

Immediate-early gene (IEG) expression has been used to identify small neural ensembles linked to a particular experience, based on the principle that a selective subset of activated neurons will encode specific memories or behavioral responses. The majority of these studies have focused on “engrams” in higher-order brain areas where more abstract or convergent sensory information is represented, such as the hippocampus, prefrontal cortex, or amygdala. In primary sensory cortex, IEG expression can label neurons that are responsive to specific sensory stimuli, but experience-dependent shaping of neural ensembles marked by IEG expression has not been demonstrated. Here, we use a fosGFP transgenic mouse to longitudinally monitor in vivo expression of the activity-dependent gene c-fos in superficial layers (L2/3) of primary somatosensory cortex (S1) during a whisker-dependent learning task. We find that sensory association training does not detectably alter fosGFP expression in L2/3 neurons. Although training broadly enhances thalamocortical synaptic strength in pyramidal neurons, we find that synapses onto fosGFP+ neurons are not selectively increased by training; rather, synaptic strengthening is concentrated in fosGFP− neurons. Taken together, these data indicate that expression of the IEG reporter fosGFP does not facilitate identification of a learning-specific engram in L2/3 in barrel cortex during whisker-dependent sensory association learning.


2014 ◽  
Vol 369 (1641) ◽  
pp. 20130534 ◽  
Author(s):  
Theofanis I. Panagiotaropoulos ◽  
Vishal Kapoor ◽  
Nikos K. Logothetis

The combination of electrophysiological recordings with ambiguous visual stimulation made possible the detection of neurons that represent the content of subjective visual perception and perceptual suppression in multiple cortical and subcortical brain regions. These neuronal populations, commonly referred to as the neural correlates of consciousness , are more likely to be found in the temporal and prefrontal cortices as well as the pulvinar, indicating that the content of perceptual awareness is represented with higher fidelity in higher-order association areas of the cortical and thalamic hierarchy, reflecting the outcome of competitive interactions between conflicting sensory information resolved in earlier stages. However, despite the significant insights into conscious perception gained through monitoring the activities of single neurons and small, local populations, the immense functional complexity of the brain arising from correlations in the activity of its constituent parts suggests that local, microscopic activity could only partially reveal the mechanisms involved in perceptual awareness. Rather, the dynamics of functional connectivity patterns on a mesoscopic and macroscopic level could be critical for conscious perception. Understanding these emergent spatio-temporal patterns could be informative not only for the stability of subjective perception but also for spontaneous perceptual transitions suggested to depend either on the dynamics of antagonistic ensembles or on global intrinsic activity fluctuations that may act upon explicit neural representations of sensory stimuli and induce perceptual reorganization. Here, we review the most recent results from local activity recordings and discuss the potential role of effective, correlated interactions during perceptual awareness.


2021 ◽  
Author(s):  
Joseph T Francis ◽  
Anna Rozenboym ◽  
Lee von Kraus ◽  
Shaohua Xu ◽  
Pratik Chhatbar ◽  
...  

Lost sensations, such as touch, could be restored by microstimulation (MiSt) along the sensory neural substrate. Such neuroprosthetic sensory information can be used as feedback from an invasive brain-machine interface (BMI) to control a robotic arm/hand, such that tactile and proprioceptive feedback from the sensorized robotic arm/hand is directly given to the BMI user. Microstimulation in the human somatosensory thalamus (Vc) has been shown to produce somatosensory perceptions. However, until recently, systematic methods for using thalamic stimulation to evoke naturalistic touch perceptions were lacking. We have recently presented rigorous methods for determining a mapping between ventral posterior lateral thalamus (VPL) MiSt, and neural responses in the somatosensory cortex (S1), in a rodent model (Choi et al., 2016; Choi and Francis, 2018). Our technique minimizes the difference between S1 neural responses induced by natural sensory stimuli and those generated via VPL MiSt. Our goal is to develop systems that know what MiSt will produce a given neural response and possibly a more natural "sensation." To date, our optimization has been conducted in the rodent model and simulations. Here we present data from simple non-optimized thalamic MiSt during peri-operative experiments, where we MiSt in the VPL of macaques with a somatosensory system more like humans. We implanted arrays of microelectrodes across the hand area of the macaque S1 cortex as well as in the VPL thalamus. Multi and single-unit recordings were used to compare cortical responses to natural touch and thalamic MiSt in the anesthetized state. Post stimulus time histograms were highly correlated between the VPL MiSt and natural touch modalities, adding support to the use of VPL MiSt towards producing a somatosensory neuroprosthesis in humans.


2015 ◽  
Vol 112 (41) ◽  
pp. 12834-12839 ◽  
Author(s):  
Houman Safaai ◽  
Ricardo Neves ◽  
Oxana Eschenko ◽  
Nikos K. Logothetis ◽  
Stefano Panzeri

Neuronal responses to sensory stimuli are not only driven by feedforward sensory pathways but also depend upon intrinsic factors (collectively known as the network state) that include ongoing spontaneous activity and neuromodulation. To understand how these factors together regulate cortical dynamics, we recorded simultaneously spontaneous and somatosensory-evoked multiunit activity from primary somatosensory cortex and from the locus coeruleus (LC) (the neuromodulatory nucleus releasing norepinephrine) in urethane-anesthetized rats. We found that bursts of ipsilateral-LC firing preceded by few tens of milliseconds increases of cortical excitability, and that the 1- to 10-Hz rhythmicity of LC discharge appeared to increase the power of delta-band (1–4 Hz) cortical synchronization. To investigate quantitatively how LC firing might causally influence spontaneous and stimulus-driven cortical dynamics, we then constructed and fitted to these data a model describing the dynamical interaction of stimulus drive, ongoing synchronized cortical activity, and noradrenergic neuromodulation. The model proposes a coupling between LC and cortex that can amplify delta-range cortical fluctuations, and shows how suitably timed phasic LC bursts can lead to enhanced cortical responses to weaker stimuli and increased temporal precision of cortical stimulus-evoked responses. Thus, the temporal structure of noradrenergic modulation may selectively and dynamically enhance or attenuate cortical responses to stimuli. Finally, using the model prediction of single-trial cortical stimulus-evoked responses to discount single-trial state-dependent variability increased by ∼70% the sensory information extracted from cortical responses. This suggests that downstream circuits may extract information more effectively after estimating the state of the circuit transmitting the sensory message.


2018 ◽  
Vol 115 (40) ◽  
pp. E9439-E9448 ◽  
Author(s):  
Elena M. Vazey ◽  
David E. Moorman ◽  
Gary Aston-Jones

Phasic activation of locus coeruleus (LC)-norepinephrine (NE) neurons is associated with focused attention and behavioral responses to salient stimuli. We used cell-type–specific optogenetics and single-unit neurophysiology to identify how LC activity influences neural encoding of sensory information. We found that phasic, but not tonic, LC-NE photoactivation generated a distinct event-related potential (ERP) across cortical regions. Salient sensory stimuli (which innately trigger phasic LC activity) produced strong excitatory cortical responses during this ERP window. Application of weaker, nonsalient stimuli produced limited responses, but these responses were elevated to salient stimulus levels when they were temporally locked with phasic LC photoactivation. These results demonstrate that phasic LC activity enhances cortical encoding of salient stimuli by facilitating long-latency signals within target regions in response to stimulus intensity/salience. The LC-driven salience signal identified here provides a measure of phasic LC activity that can be used to investigate the LC’s role in attentional processing across species.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Emily T. Wood ◽  
Kaitlin K. Cummings ◽  
Jiwon Jung ◽  
Genevieve Patterson ◽  
Nana Okada ◽  
...  

AbstractSensory over-responsivity (SOR), extreme sensitivity to or avoidance of sensory stimuli (e.g., scratchy fabrics, loud sounds), is a highly prevalent and impairing feature of neurodevelopmental disorders such as autism spectrum disorders (ASD), anxiety, and ADHD. Previous studies have found overactive brain responses and reduced modulation of thalamocortical connectivity in response to mildly aversive sensory stimulation in ASD. These findings suggest altered thalamic sensory gating which could be associated with an excitatory/inhibitory neurochemical imbalance, but such thalamic neurochemistry has never been examined in relation to SOR. Here we utilized magnetic resonance spectroscopy and resting-state functional magnetic resonance imaging to examine the relationship between thalamic and somatosensory cortex inhibitory (gamma-aminobutyric acid, GABA) and excitatory (glutamate) neurochemicals with the intrinsic functional connectivity of those regions in 35 ASD and 35 typically developing pediatric subjects. Although there were no diagnostic group differences in neurochemical concentrations in either region, within the ASD group, SOR severity correlated negatively with thalamic GABA (r = −0.48, p < 0.05) and positively with somatosensory glutamate (r = 0.68, p < 0.01). Further, in the ASD group, thalamic GABA concentration predicted altered connectivity with regions previously implicated in SOR. These variations in GABA and associated network connectivity in the ASD group highlight the potential role of GABA as a mechanism underlying individual differences in SOR, a major source of phenotypic heterogeneity in ASD. In ASD, abnormalities of the thalamic neurochemical balance could interfere with the thalamic role in integrating, relaying, and inhibiting attention to sensory information. These results have implications for future research and GABA-modulating pharmacologic interventions.


2021 ◽  
pp. 1-14
Author(s):  
Debo Dong ◽  
Dezhong Yao ◽  
Yulin Wang ◽  
Seok-Jun Hong ◽  
Sarah Genon ◽  
...  

Abstract Background Schizophrenia has been primarily conceptualized as a disorder of high-order cognitive functions with deficits in executive brain regions. Yet due to the increasing reports of early sensory processing deficit, recent models focus more on the developmental effects of impaired sensory process on high-order functions. The present study examined whether this pathological interaction relates to an overarching system-level imbalance, specifically a disruption in macroscale hierarchy affecting integration and segregation of unimodal and transmodal networks. Methods We applied a novel combination of connectome gradient and stepwise connectivity analysis to resting-state fMRI to characterize the sensorimotor-to-transmodal cortical hierarchy organization (96 patients v. 122 controls). Results We demonstrated compression of the cortical hierarchy organization in schizophrenia, with a prominent compression from the sensorimotor region and a less prominent compression from the frontal−parietal region, resulting in a diminished separation between sensory and fronto-parietal cognitive systems. Further analyses suggested reduced differentiation related to atypical functional connectome transition from unimodal to transmodal brain areas. Specifically, we found hypo-connectivity within unimodal regions and hyper-connectivity between unimodal regions and fronto-parietal and ventral attention regions along the classical sensation-to-cognition continuum (voxel-level corrected, p < 0.05). Conclusions The compression of cortical hierarchy organization represents a novel and integrative system-level substrate underlying the pathological interaction of early sensory and cognitive function in schizophrenia. This abnormal cortical hierarchy organization suggests cascading impairments from the disruption of the somatosensory−motor system and inefficient integration of bottom-up sensory information with attentional demands and executive control processes partially account for high-level cognitive deficits characteristic of schizophrenia.


2021 ◽  
Author(s):  
Roman Dvorkin ◽  
Stephen D. Shea

ABSTRACTThe noradrenergic locus coeruleus (LC) mediates key aspects of arousal, memory, and cognition in structured tasks, but its contribution to natural behavior remains unclear. Neuronal activity in LC is organized into sustained (‘tonic’) firing patterns reflecting global brain states and rapidly fluctuating (‘phasic’) bursts signaling discrete behaviorally significant events. LC’s broad participation in social behavior including maternal behavior is well-established, yet the temporal relationship of its activity to sensory events and behavioral decisions in this context is unknown. Here, we made electrical and optical recordings from LC in female mice during maternal interaction with pups. We find that pup retrieval stably elicits precisely timed and pervasive phasic activation of LC that can’t be attributed to sensory stimuli, motor activity, or reward. Correlation of LC activity with retrieval events shows that phasic events are most closely related to subsequent behavior. We conclude that LC likely drives goal-directed action selection during social behavior with globally-broadcast noradrenaline release.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yawen Ao ◽  
Bo Yang ◽  
Caiju Zhang ◽  
Bo Wu ◽  
Xuefen Zhang ◽  
...  

Locus coeruleus (LC) sends widespread outputs to many brain regions to modulate diverse functions, including sleep/wake states, attention, and the general anesthetic state. The paraventricular thalamus (PVT) is a critical thalamic area for arousal and receives dense tyrosine-hydroxylase (TH) inputs from the LC. Although anesthesia and sleep may share a common pathway, it is important to understand the processes underlying emergence from anesthesia. In this study, we hypothesize that LC TH neurons and the TH:LC-PVT circuit may be involved in regulating emergence from anesthesia. Only male mice are used in this study. Here, using c-Fos as a marker of neural activity, we identify LC TH expressing neurons are active during anesthesia emergence. Remarkably, chemogenetic activation of LC TH neurons shortens emergence time from anesthesia and promotes cortical arousal. Moreover, enhanced c-Fos expression is observed in the PVT after LC TH neurons activation. Optogenetic activation of the TH:LC-PVT projections accelerates emergence from anesthesia, whereas, chemogenetic inhibition of the TH:LC-PVT circuit prolongs time to wakefulness. Furthermore, optogenetic activation of the TH:LC-PVT projections produces electrophysiological evidence of arousal. Together, these results demonstrate that activation of the TH:LC-PVT projections is helpful in facilitating the transition from isoflurane anesthesia to an arousal state, which may provide a new strategy in shortening the emergence time after general anesthesia.


Sign in / Sign up

Export Citation Format

Share Document