scholarly journals Hierarchical effects of task engagement on amplitude modulation encoding in auditory cortex

2015 ◽  
Vol 113 (1) ◽  
pp. 307-327 ◽  
Author(s):  
Mamiko Niwa ◽  
Kevin N. O'Connor ◽  
Elizabeth Engall ◽  
Jeffrey S. Johnson ◽  
M. L. Sutter

We recorded from middle lateral belt (ML) and primary (A1) auditory cortical neurons while animals discriminated amplitude-modulated (AM) sounds and also while they sat passively. Engagement in AM discrimination improved ML and A1 neurons' ability to discriminate AM with both firing rate and phase-locking; however, task engagement affected neural AM discrimination differently in the two fields. The results suggest that these two areas utilize different AM coding schemes: a “single mode” in A1 that relies on increased activity for AM relative to unmodulated sounds and a “dual-polar mode” in ML that uses both increases and decreases in neural activity to encode modulation. In the dual-polar ML code, nonsynchronized responses might play a special role. The results are consistent with findings in the primary and secondary somatosensory cortices during discrimination of vibrotactile modulation frequency, implicating a common scheme in the hierarchical processing of temporal information among different modalities. The time course of activity differences between behaving and passive conditions was also distinct in A1 and ML and may have implications for auditory attention. At modulation depths ≥ 16% (approximately behavioral threshold), A1 neurons' improvement in distinguishing AM from unmodulated noise is relatively constant or improves slightly with increasing modulation depth. In ML, improvement during engagement is most pronounced near threshold and disappears at highly suprathreshold depths. This ML effect is evident later in the stimulus, and mainly in nonsynchronized responses. This suggests that attention-related increases in activity are stronger or longer-lasting for more difficult stimuli in ML.

2007 ◽  
Vol 98 (3) ◽  
pp. 1451-1474 ◽  
Author(s):  
Brian J. Malone ◽  
Brian H. Scott ◽  
Malcolm N. Semple

In many animals, the information most important for processing communication sounds, including speech, consists of temporal envelope cues below ∼20 Hz. Physiological studies, however, have typically emphasized the upper limits of modulation encoding. Responses to sinusoidal AM (SAM) are generally summarized by modulation transfer functions (MTFs), which emphasize tuning to modulation frequency rather than the representation of the instantaneous stimulus amplitude. Unfortunately, MTFs fail to capture important but nonlinear aspects of amplitude coding in the central auditory system. We focus on an alternative data representation, the modulation period histogram (MPH), which depicts the spike train folded on the modulation period of the SAM stimulus. At low modulation frequencies, the fluctuations of stimulus amplitude in decibels are robustly encoded by the cycle-by-cycle response dynamics evident in the MPH. We show that all of the parameters that define a SAM stimulus—carrier frequency, carrier level, modulation frequency, and modulation depth—are reflected in the shape of cortical MPHs. In many neurons that are nonmonotonically tuned for sound amplitude, the representation of modulation frequency is typically sacrificed to preserve the mapping between the instantaneous discharge rate and the instantaneous stimulus amplitude, resulting in two response modes per modulation cycle. This behavior, as well as the relatively poor tuning of cortical MTFs, suggests that auditory cortical neurons are not well suited for operating as a “modulation filterbank.” Instead, our results suggest that <20 Hz, the processing of modulated signals is better described as envelope shape discrimination rather than modulation frequency extraction.


2008 ◽  
Vol 100 (1) ◽  
pp. 76-91 ◽  
Author(s):  
John C. Middlebrooks

Cochlear implant speech processors transmit temporal features of sound as amplitude modulation of constant-rate electrical pulse trains. This study evaluated the central representation of amplitude modulation in the form of phase-locked firing of neurons in the auditory cortex. Anesthetized pigmented guinea pigs were implanted with cochlear electrode arrays. Stimuli were 254 pulse/s (pps) trains of biphasic electrical pulses, sinusoidally modulated with frequencies of 10–64 Hz and modulation depths of −40 to −5 dB re 100% (i.e., 1–56.2% modulation). Single- and multiunit activity was recorded from multi-site silicon-substrate probes. The maximum frequency for significant phase locking (limiting modulation frequency) was ≥60 Hz for 42% of recording sites, whereas phase locking to pulses of unmodulated pulse trains rarely exceeded 30 pps. The strength of phase locking to frequencies ≥40 Hz often varied nonmonotonically with modulation depth, commonly peaking at modulation depths around −15 to −10 dB. Cortical phase locking coded modulation frequency reliably, whereas a putative rate code for frequency was confounded by rate changes with modulation depth. Group delay computed from the slope of mean phase versus modulation frequency tended to increase with decreasing limiting modulation frequency. Neurons in cortical extragranular layers had lower limiting modulation frequencies than did neurons in thalamic afferent layers. Those observations suggest that the low-pass characteristic of cortical phase locking results from intracortical filtering mechanisms. The results show that cortical neurons can phase lock to modulated electrical pulse trains across the range of modulation frequencies and depths presented by cochlear implant speech processors.


2012 ◽  
Vol 107 (12) ◽  
pp. 3325-3341 ◽  
Author(s):  
Jeffrey S. Johnson ◽  
Pingbo Yin ◽  
Kevin N. O'Connor ◽  
Mitchell L. Sutter

Amplitude modulation (AM) is a common feature of natural sounds, and its detection is biologically important. Even though most sounds are not fully modulated, the majority of physiological studies have focused on fully modulated (100% modulation depth) sounds. We presented AM noise at a range of modulation depths to awake macaque monkeys while recording from neurons in primary auditory cortex (A1). The ability of neurons to detect partial AM with rate and temporal codes was assessed with signal detection methods. On average, single-cell synchrony was as or more sensitive than spike count in modulation detection. Cells are less sensitive to modulation depth if tested away from their best modulation frequency, particularly for temporal measures. Mean neural modulation detection thresholds in A1 are not as sensitive as behavioral thresholds, but with phase locking the most sensitive neurons are more sensitive, suggesting that for temporal measures the lower-envelope principle cannot account for thresholds. Three methods of preanalysis pooling of spike trains (multiunit, similar to convergence from a cortical column; within cell, similar to convergence of cells with matched response properties; across cell, similar to indiscriminate convergence of cells) all result in an increase in neural sensitivity to modulation depth for both temporal and rate codes. For the across-cell method, pooling of a few dozen cells can result in detection thresholds that approximate those of the behaving animal. With synchrony measures, indiscriminate pooling results in sensitive detection of modulation frequencies between 20 and 60 Hz, suggesting that differences in AM response phase are minor in A1.


1994 ◽  
Vol 72 (5) ◽  
pp. 2051-2069 ◽  
Author(s):  
M. Steriade ◽  
F. Amzica

1. We investigated the development from patterns of electroencephalogram (EEG) synchronization to paroxysms consisting of spike-wave (SW) complexes at 2–4 Hz or to seizures at higher frequencies (7–15 Hz). We used multisite, simultaneous EEG, extracellular, and intracellular recordings from various neocortical areas and thalamic nuclei of anesthetized cats. 2. The seizures were observed in 25% of experimental animals, all maintained under ketamine and xylazine anesthesia, and were either induced by thalamocortical volleys and photic stimulation or occurred spontaneously. Out of unit and field potential recordings within 370 cortical and 65 thalamic sites, paroxysmal events occurred in 70 cortical and 8 thalamic sites (approximately 18% and 12%, respectively), within which a total of 181 neurons (143 extracellular and 38 intracellular) were simultaneously recorded in various combinations of cell groups. 3. Stimulus-elicited and spontaneous SW seizures at 2–4 Hz lasted for 15–35 s and consisted of barrages of action potentials related to the spiky depth-negative (surface-positive) field potentials, followed by neuronal silence during the depth-positive wave component of SW complexes. The duration of inhibitory periods progressively increased during the seizure, at the expense of the phasic excitatory phases. 4. Intracellular recordings showed that, during such paroxysms, cortical neurons displayed a tonic depolarization (approximately 10–20 mV), sculptured by rhythmic hyperpolarizations. 5. In all cases, measures of synchrony demonstrated time lags between discharges of simultaneously recorded cortical neurons, from as short as 3–10 ms up to 50 ms or even longer intervals. Synchrony was assessed by cross-correlograms, by a method termed first-spike-analysis designed to detect dynamic temporal relations between neurons and relying on the detection of the first action potential in a spike train, and by a method termed sequential-field-correlation that analyzed the time course of field potentials simultaneously recorded from different cortical areas. 6. The degree of synchrony progressively increased from preseizure sleep patterns to the early stage of the SW seizure and, further, to its late stage. In some cases the time relation between neurons during the early stages of seizures was inversed during late stages. 7. These data show that, although the common definition of SW seizures, regarded as suddenly generalized and bilaterally synchronous activities, may be valid at the macroscopic EEG level, cortical neurons display time lags between their rhythmic spike trains, progressively increased synchrony, and changes in the temporal relations between their discharges during the paroxysms.(ABSTRACT TRUNCATED AT 400 WORDS)


2004 ◽  
Vol 92 (5) ◽  
pp. 3030-3042 ◽  
Author(s):  
Jay Hegdé ◽  
David C. Van Essen

The firing rate of visual cortical neurons typically changes substantially during a sustained visual stimulus. To assess whether, and to what extent, the information about shape conveyed by neurons in visual area V2 changes over the course of the response, we recorded the responses of V2 neurons in awake, fixating monkeys while presenting a diverse set of static shape stimuli within the classical receptive field. We analyzed the time course of various measures of responsiveness and stimulus-related response modulation at the level of individual cells and of the population. For a majority of V2 cells, the response modulation was maximal during the initial transient response (40–80 ms after stimulus onset). During the same period, the population response was relatively correlated, in that V2 cells tended to respond similarly to specific subsets of stimuli. Over the ensuing 80–100 ms, the signal-to-noise ratio of individual cells generally declined, but to a lesser degree than the evoked-response rate during the corresponding time bins, and the response profiles became decorrelated for many individual cells. Concomitantly, the population response became substantially decorrelated. Our results indicate that the information about stimulus shape evolves dynamically and relatively rapidly in V2 during static visual stimulation in ways that may contribute to form discrimination.


2007 ◽  
Vol 97 (1) ◽  
pp. 522-539 ◽  
Author(s):  
Paul C. Nelson ◽  
Laurel H. Carney

Neural responses to amplitude-modulated (AM) tones in the unanesthetized rabbit inferior colliculus (IC) were studied in an effort to establish explicit relationships between physiological and psychophysical measures of temporal envelope processing. Specifically, responses to variations in modulation depth ( m) at the cell’s best modulation frequency, with and without modulation maskers, were quantified in terms of average rate and synchronization to the envelope over the entire perceptual dynamic range of depths. Statistically significant variations in the metrics were used to define neural AM detection and discrimination thresholds. Synchrony emerged at modulation depths comparable with psychophysical AM detection sensitivities in some neurons, whereas the lowest rate-based neural thresholds could not account for psychoacoustical thresholds. The majority of rate thresholds (85%) were −10 dB or higher (in 20 log m), and 16% of the population exhibited no systematic dependence of average rate on m. Neural thresholds for AM detection did not decrease systematically at higher SPLs (as observed psychophysically): thresholds remained constant or increased with level for most cells tested at multiple sound-pressure levels (SPLs). At depths higher than the rate-based detection threshold, some rate modulation-depth functions were sufficiently steep with respect to the across-trial variability of the rate to predict depth discrimination thresholds as low as 1 dB (comparable with the psychophysics). Synchrony, on the other hand, did not vary systematically with m in many cells at high modulation depths. A simple computational model was extended to reproduce several features of the modulation frequency and depth dependence of both transient and sustained pure-tone responders.


2004 ◽  
Vol 91 (5) ◽  
pp. 1990-1998 ◽  
Author(s):  
Pablo Fuentealba ◽  
Sylvain Crochet ◽  
Igor Timofeev ◽  
Mircea Steriade

To study the interactions between thalamic and cortical inputs onto neocortical neurons, we used paired-pulse stimulation (PPS) of thalamic and cortical inputs as well as PPS of two cortical or two thalamic inputs that converged, at different time intervals, onto intracellularly recorded cortical and thalamocortical neurons in anesthetized cats. PPS of homosynaptic cortico-cortical pathways produced facilitation, depression, or no significant effects in cortical pathways, whereas cortical responses to thalamocortical inputs were mostly facilitated at both short and long intervals. By contrast, heterosynaptic interactions between either cortical and thalamic, or thalamic and cortical, inputs generally produced decreases in the peak amplitudes and depolarization area of evoked excitatory postsynaptic potentials (EPSPs), with maximal effect at ∼10 ms and lasting from 60 to 100 ms. All neurons tested with thalamic followed by cortical stimuli showed a decrease in the apparent input resistance ( Rin), the time course of which paralleled that of decreased responses, suggesting that shunting is the factor accounting for EPSP's decrease. Only half of neurons tested with cortical followed by thalamic stimuli displayed changes in Rin. Spike shunting in the thalamus may account for those cases in which decreased synaptic responsiveness of cortical neurons was not associated with decreased Rin because thalamocortical neurons showed decreased firing probability during cortical stimulation. These results suggest a short-lasting but strong shunting between thalamocortical and cortical inputs onto cortical neurons.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fang Wang ◽  
Blair Kaneshiro ◽  
C. Benjamin Strauber ◽  
Lindsey Hasak ◽  
Quynh Trang H. Nguyen ◽  
...  

AbstractEEG has been central to investigations of the time course of various neural functions underpinning visual word recognition. Recently the steady-state visual evoked potential (SSVEP) paradigm has been increasingly adopted for word recognition studies due to its high signal-to-noise ratio. Such studies, however, have been typically framed around a single source in the left ventral occipitotemporal cortex (vOT). Here, we combine SSVEP recorded from 16 adult native English speakers with a data-driven spatial filtering approach—Reliable Components Analysis (RCA)—to elucidate distinct functional sources with overlapping yet separable time courses and topographies that emerge when contrasting words with pseudofont visual controls. The first component topography was maximal over left vOT regions with a shorter latency (approximately 180 ms). A second component was maximal over more dorsal parietal regions with a longer latency (approximately 260 ms). Both components consistently emerged across a range of parameter manipulations including changes in the spatial overlap between successive stimuli, and changes in both base and deviation frequency. We then contrasted word-in-nonword and word-in-pseudoword to test the hierarchical processing mechanisms underlying visual word recognition. Results suggest that these hierarchical contrasts fail to evoke a unitary component that might be reasonably associated with lexical access.


Author(s):  
Laura Roche Chapman ◽  
Brooke Hallowell

Purpose: Arousal and cognitive effort are relevant yet often overlooked components of attention during language processing. Pupillometry can be used to provide a psychophysiological index of arousal and cognitive effort. Given that much is unknown regarding the relationship between cognition and language deficits seen in people with aphasia (PWA), pupillometry may be uniquely suited to explore those relationships. The purpose of this study was to examine arousal and the time course of the allocation of cognitive effort related to sentence processing in people with and without aphasia. Method: Nineteen PWA and age- and education-matched control participants listened to relatively easy (subject-relative) and relatively difficult (object-relative) sentences and were required to answer occasional comprehension questions. Tonic and phasic pupillary responses were used to index arousal and the unfolding of cognitive effort, respectively, while sentences were processed. Group differences in tonic and phasic responses were examined. Results: Group differences were observed for both tonic and phasic responses. PWA exhibited greater overall arousal throughout the task compared with controls, as evidenced by larger tonic pupil responses. Controls exhibited more effort (greater phasic responses) for difficult compared with easy sentences; PWA did not. Group differences in phasic responses were apparent during end-of-sentence and postsentence time windows. Conclusions: Results indicate that the attentional state of PWA in this study was not consistently supportive of adequate task engagement. PWA in our sample may have relatively limited attentional capacity or may have challenges with allocating existing capacity in ways that support adequate task engagement and performance. This work adds to the body of evidence supporting the validity of pupillometric tasks for the study of aphasia and contributes to a better understanding of the nature of language deficits in aphasia. Supplemental Material https://doi.org/10.23641/asha.16959376


2008 ◽  
Vol 99 (1) ◽  
pp. 356-366 ◽  
Author(s):  
Michael Shoykhet ◽  
Daniel J. Simons

Extracellular single-unit recordings were used to characterize responses of thalamic barreloid and cortical barrel neurons to controlled whisker deflections in 2, 3-, and 4-wk-old and adult rats in vivo under fentanyl analgesia. Results indicate that response properties of thalamic and cortical neurons diverge during development. Responses to deflection onsets and offsets among thalamic neurons mature in parallel, whereas among cortical neurons responses to deflection offsets become disproportionately smaller with age. Thalamic neuron receptive fields become more multiwhisker, whereas those of cortical neurons become more single-whisker. Thalamic neurons develop a higher degree of angular selectivity, whereas that of cortical neurons remains constant. In the temporal domain, response latencies decrease both in thalamic and cortical neurons, but the maturation time-course differs between the two populations. Response latencies of thalamic cells decrease primarily between 2 and 3 wk of life, whereas response latencies of cortical neurons decrease in two distinct steps—the first between 2 and 3 wk of life and the second between the fourth postnatal week and adulthood. Although the first step likely reflects similar subcortical changes, the second phase likely corresponds to developmental myelination of thalamocortical fibers. Divergent development of thalamic and cortical response properties indicates that thalamocortical circuits in the whisker-to-barrel pathway undergo protracted maturation after 2 wk of life and provides a potential substrate for experience-dependent plasticity during this time.


Sign in / Sign up

Export Citation Format

Share Document