scholarly journals Retinal ganglion cell defects cause decision shifts in visually evoked defense responses

2020 ◽  
Vol 124 (5) ◽  
pp. 1530-1549
Author(s):  
Rebecca Nicole Lees ◽  
Armaan Fazal Akbar ◽  
Tudor Constantin Badea

Flight and freezing response choices evoked by visual stimuli are controlled by brain stem and thalamic circuits. Genetically modified mice with loss of specific retinal ganglion cell (RGC) subpopulations have altered flight versus freezing choices in response to some but not other visual stimuli. This finding suggests that “threatening” visual stimuli may be computed already at the level of the retina and communicated via dedicated pathways (RGCs) to the brain.

Development ◽  
1990 ◽  
Vol 108 (1) ◽  
pp. 147-158
Author(s):  
J.S. Taylor

The growth of optic axons towards experimentally rotated tecta has been studied. In stage 24/25 embryos, a piece of the dorsal neural tube, containing the dorsal midbrain rudiment, was rotated through 180 degrees. At later stages of development, the pathways of growing optic axons were investigated by labelling with either horseradish peroxidase or fluorescent dye. It is shown that retinal ganglion cell axons followed well-defined pathways, in spite of the abnormal structure of the brain, and were able to locate displaced tecta. This directed outgrowth of retinal axons in the optic tracts appears to be related either to the tectum or to some other component included in the graft operations. In tadpoles in which the midbrain rudiment was removed, optic axons still followed the normal course of the optic tract. This observation argues against long-range target attraction as being essential in guiding growing retinal axons towards the tectum. An alternative axon guidance mechanism, selective fasciculation, is discussed as a possible alternative to explain the directed axon outgrowth which occurs in both the normal and in these experimentally manipulated tadpoles.


2021 ◽  
Author(s):  
Karthik Shekhar ◽  
Irene E Whitney ◽  
Salwan Butrus ◽  
Yi-Rong Peng ◽  
Joshua R Sanes

The genesis of broad neuronal classes from multipotential neural progenitor cells has been extensively studied, but less is known about the diversification of a single neuronal class into multiple types. We used single-cell RNA-seq to study how newly-born (postmitotic) mouse retinal ganglion cell (RGC) precursors diversify into ~45 discrete types. Computational analysis provides evidence that RGC type identity is not specified at mitotic exit, but acquired by gradual, asynchronous fate restriction of postmitotic multipotential precursors. Some types are not identifiable until a week after they are generated. Immature RGCs may be specified to project ipsilaterally or contralaterally to the rest of the brain before their type identity has been determined. Optimal transport inference identifies groups of RGC precursors with largely non-overlapping fates, distinguished by selectively expressed transcription factors that could act as fate determinants. Our study provides a framework for investigating the molecular diversification of discrete types within a neuronal class.


2020 ◽  
Author(s):  
Nadia Parmhans ◽  
Anne Drury Fuller ◽  
Eileen Nguyen ◽  
Katherine Chuang ◽  
David Swygart ◽  
...  

AbstractMembers of the POU4F/Brn3 transcription factor family have an established role in the development of retinal ganglion cell types (RGCs), the projection sensory neuron conveying visual information from the mammalian eye to the brain. Our previous work using sparse random recombination of a conditional knock-in reporter allele expressing Alkaline Phosphatase (AP) and intersectional genetics had identified three types of Pou4f3/Brn3c positive (Brn3c+) RGCs. Here, we describe a novel Brn3cCre mouse allele generated by serial Dre to Cre recombination. We use this allele to explore the expression overlap of Brn3c with Brn3a and Brn3b and the dendritic arbor morphologies and visual stimulus properties of Brn3c+ RGC types. Furthermore, we explore Brn3c-expressing brain nuclei. Our analysis reveals a much larger number of Brn3c+ RGCs and more diverse set of RGC types than previously reported. The majority of RGCs having expressed Brn3c during development are still Brn3c positive in the adult, and all of them express Brn3a while only about half express Brn3b. Intersection of Brn3b and Brn3c expression highlights an area of increased RGC density, similar to an area centralis, corresponding to part of the binocular field of view of the mouse. Brn3c+ neurons and projections are present in multiple brain nuclei. Brn3c+ RGC projections can be detected in the Lateral Geniculate Nucleus (LGN), Pretectal Area (PTA) and Superior Colliculus (SC) but also in the thalamic reticular nucleus (TRN), a visual circuit station that was not previously described to receive retinal input. Most Brn3c+ neurons of the brain are confined to the pretectum and the dorsal midbrain. Amongst theses we identify a previously unknown Brn3c+ subdivision of the deep mesencephalic nucleus (DpMe). Thus, our newly generated allele provides novel biological insights into RGC type classification, brain connectivity and midbrain cytoarchitectonic, and opens the avenue for specific characterization and manipulation of these structures.


Author(s):  
Michaël J. A. Girard ◽  
Jun-Kyo F. Suh ◽  
Michael Bottlang ◽  
Claude F. Burgoyne ◽  
J. Crawford Downs

The sclera is the outer shell and principal load-bearing tissue of the eye, and consists primarily of avascular lamellae of collagen fibers. Ninety percent of the collagen fibers in the sclera are Type I, which provide the eye with necessary mechanical strength to withstand intraocular pressure (IOP). A small hole pierces the posterior sclera, known as the scleral canal, through which the retinal ganglion cell axons turn and pass out of the eye on their path to the brain. The scleral canal is spanned by a fenestrated connective tissue called the lamina cribrosa that provides structural and nutritional support to the axons as they leave the eye. This region, including the peripapillary sclera (the sclera closest to the canal), the lamina cribrosa, and the contained retinal ganglion cell axons, is collectively known as the optic nerve head or ONH.


1992 ◽  
Vol 8 (4) ◽  
pp. 295-313 ◽  
Author(s):  
Gloria D. Guiloff ◽  
Helga Kolb

AbstractThe turtle retina has been shown to have a variety of different morphological ganglion cell types as well as distinct physiological ganglion cell types. The major projection of the retina to the brain in nonmammalian vertebrates is to the optic tectum. In this study, we address the question of which retinal ganglion cell types project to the optic tectum in the turtle.Fluorescent rhodamine-labeled microspheres were used to trace the retinal ganglion cell projection to the superficial layers of the optic tectum. The fluorescent ganglion cell somata, retrogradely marked by transport from the contralateral optic tectum, were impaled with micropipettes containing rhodamine-horseradish peroxidase solution and this dye was iontophoresed into the cells under visual control.Most of the morphological ganglion cell types described in Golgi studies (Kolb, 1982; Kolb et al., 1988) were stained. Thus, the small cell types G1, G2, G3, G5, G6, and G7; the medium-sized types G10, G11, G12, G13, and G14; and the large-sized types G15, G16, G19, G20, and G21 project to the optic tectum in the turtle. We have added a new type, G2a, which proves to have some differences from the original G2 in branching pattern. We were unable to stain the small type G4, the medium-sized types G8 and G9, and the large cell types G17 and G18; this suggests that they might not project to the superficial layers of the dorsolateral optic tectum, at least, in the turtle.


2018 ◽  
Vol 115 (10) ◽  
pp. E2393-E2402 ◽  
Author(s):  
Michael L. Risner ◽  
Silvia Pasini ◽  
Melissa L. Cooper ◽  
Wendi S. Lambert ◽  
David J. Calkins

Diseases of the brain involve early axon dysfunction that often precedes outright degeneration. Pruning of dendrites and their synapses represents a potential driver of axonopathy by reducing activity. Optic nerve degeneration in glaucoma, the world’s leading cause of irreversible blindness, involves early stress to retinal ganglion cell (RGC) axons from sensitivity to intraocular pressure (IOP). This sensitivity also influences survival of RGC dendrites and excitatory synapses in the retina. Here we tested in individual RGCs identified by type the relationship between dendritic organization and axon signaling to light following modest, short-term elevations in pressure. We found dendritic pruning occurred early, by 2 wk of elevation, and independent of whether the RGC responded to light onset (ON cells) or offset (OFF cells). Pruning was similarly independent of ON and OFF in the DBA/2J mouse, a chronic glaucoma model. Paradoxically, all RGCs, even those with significant pruning, demonstrated a transient increase in axon firing in response to the preferred light stimulus that occurred on a backdrop of generally enhanced excitability. The increased response was not through conventional presynaptic signaling, but rather depended on voltage-sensitive sodium channels that increased transiently in the axon. Pruning, axon dysfunction, and deficits in visual acuity did not progress between 2 and 4 wk of elevation. These results suggest neurodegeneration in glaucoma involves an early axogenic response that counters IOP-related stress to excitatory dendritic architecture to slow progression and maintain signaling to the brain. Thus, short-term exposure to elevated IOP may precondition the neural system to further insult.


Sign in / Sign up

Export Citation Format

Share Document