Vibrotactile Coding Capacities of Spinocervical Tract Neurons in the Cat

2006 ◽  
Vol 95 (3) ◽  
pp. 1465-1477 ◽  
Author(s):  
V. Sahai ◽  
D. A. Mahns ◽  
N. M. Perkins ◽  
L. Robinson ◽  
M. J. Rowe

The response characteristics and tactile coding capacities of individual dorsal horn neurons, in particular, those of the spinocervical tract (SCT), have been examined in the anesthetized cat. Twenty one of 38 neurons studied were confirmed SCT neurons based on antidromic activation procedures. All had tactile receptive fields on the hairy skin of the hindlimb. Most (29/38) could also be activated transynaptically by electrical stimulation of the cervical dorsal columns, suggesting that a common set of tactile primary afferent fibers may provide the input for both the dorsal column-lemniscal pathway and for parallel ascending pathways, such as the SCT. All but 3 of the 38 neurons studied displayed a pure dynamic sensitivity to controlled tactile stimuli but were unable to sustain their responsiveness throughout 1s trains of vibration at vibration frequencies exceeding 5–10 Hz. Stimulus-response relations revealed a very limited capacity of individual SCT neurons to signal, in a graded way, the intensity parameter of the vibrotactile stimulus. Furthermore, because of their inability to respond on a cycle-by-cycle pattern at vibration frequencies >5–10 Hz, these neurons were unable to provide any useful signal of vibration frequency beyond the very narrow bandwidth of ∼5–10 Hz. Similar limitations were observed in the responsiveness of these neurons to repetitive forms of antidromic and transynaptic inputs generated by electrical stimulation of the spinal cord. In summary, the observed limitations on the vibrotactile bandwidth of SCT neurons and on the precision and fidelity of their temporal signaling, suggest that SCT neurons could serve as little more than coarse event detectors in tactile sensibility, in contrast to DCN neurons the bandwidth of vibrotactile responsiveness of which may extend beyond 400 Hz and is therefore broader by ∼40–50 times than that of SCT neurons.

1997 ◽  
Vol 78 (6) ◽  
pp. 2924-2936 ◽  
Author(s):  
Douglas D. Rasmusson ◽  
Stacey A. Northgrave

Rasmusson, Douglas D. and Stacey A. Northgrave. Reorganization of the raccoon cuneate nucleus after peripheral denervation. J. Neurophysiol. 78: 2924–2936, 1997. The effects of peripheral nerve transection on the cuneate nucleus were studied in anesthetized raccoons using extracellular, single-unit recordings. The somatotopic organization of the cuneate nucleus first was examined in intact, control animals. The cuneate nucleus in the raccoon is organized with the digits represented in separate cell clusters. The dorsal cap region of the cuneate nucleus contains a representation of the claws and hairy skin of the digits. Within the representation of the glabrous skin, neurons with rapidly adapting properties tended to be segregated from those with slowly adapting properties. The representations of the distal and proximal pads on a digit also were segregated. Electrical stimulation of two adjacent digits provided a detailed description of the responses originating from the digit that contains the tactile receptive field (the on-focus digit) and from the adjacent (off-focus) digit. Stimulation of the on-focus digit produced a short latency excitation in all 99 neurons tested, with a mean of 10.5 ms. These responses had a low threshold (426 μA). Stimulation of an off-focus digit activated 65% of these neurons. These responses had a significantly longer latency (15.3 ms) than on-focus responses and the threshold was more than twice as large. Two to five months after amputation of digit 4, 97 cells were tested with stimulation of digits 3 and 5. A total of 44 were in the intact regions of the cuneate nucleus. They had small receptive fields on intact digits and their responses to electrical stimulation did not differ from the control neurons. The remaining 53 neurons were judged to be deafferented and in the fourth digit region on the basis of their location with respect to intact neurons. All but two of these cells had receptive fields that were much larger than normal, often including more than one digit and part of the palm. When compared with the off-focus control neurons, their responses to electrical stimulation had lower thresholds and an increased response probability and magnitude. The latencies of these cells did not decrease, however, and were the same as the off-focus control values. The enhanced responses of the deafferented neurons to adjacent digit stimulation indicate that there is a strengthening of synapses that were previously ineffective. The increased proportion of neurons that could be activated after amputation suggests that there is also a growth of new connections. This experiment demonstrates that reorganization in the adult somatotopic system does occur at the level of the dorsal column nuclei. As a consequence, many of the changes reported at the cortex and thalamus may be due to the changes occurring at this first synapse in the somatosensory pathway.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Muhammad Nazmuddin ◽  
Ingrid H. C. H. M. Philippens ◽  
Teus van Laar

AbstractDeep brain stimulation (DBS) of the nucleus basalis of Meynert (NBM) has been clinically investigated in Alzheimer’s disease (AD) and Lewy body dementia (LBD). However, the clinical effects are highly variable, which questions the suggested basic principles underlying these clinical trials. Therefore, preclinical and clinical data on the design of NBM stimulation experiments and its effects on behavioral and neurophysiological aspects are systematically reviewed here. Animal studies have shown that electrical stimulation of the NBM enhanced cognition, increased the release of acetylcholine, enhanced cerebral blood flow, released several neuroprotective factors, and facilitates plasticity of cortical and subcortical receptive fields. However, the translation of these outcomes to current clinical practice is hampered by the fact that mainly animals with an intact NBM were used, whereas most animals were stimulated unilaterally, with different stimulation paradigms for only restricted timeframes. Future animal research has to refine the NBM stimulation methods, using partially lesioned NBM nuclei, to better resemble the clinical situation in AD, and LBD. More preclinical data on the effect of stimulation of lesioned NBM should be present, before DBS of the NBM in human is explored further.


1993 ◽  
Vol 69 (2) ◽  
pp. 557-568 ◽  
Author(s):  
K. J. Berkley ◽  
G. Guilbaud ◽  
J. M. Benoist ◽  
M. Gautron

1. Previous studies in the rat and other species have shown that neurons in and near the ventrobasal complex (VB) can be activated by various visceral as well as somatic stimuli. 2. This study examined the responses of 84 single neurons in and near the rostral 2/3 of VB in 19 adult female rats in estrus to mechanical stimulation of the skin (brush, pressure, noxious pinch) and 4 different visceral stimuli, as follows: distension of both uterine horns, mechanical probing of the vagina, gentle pressure against the cervix, and distension of the colon. The rats were studied while under moderate gaseous anesthesia (33% O2-67% N2O + 0.5% halothane) and paralyzed (pancuronium bromide). 3. Of 77 neurons tested with both somatic and visceral stimuli, 70 were responsive to one type and/or the other. Responses to somatic stimuli were immediate with brief afterdischarges to the pinch stimuli. In contrast, responses to visceral stimuli were delayed an average of 9 s with long afterdischarges averaging 2 min. Most viscerally responsive neurons (74%) had somatic receptive fields, often (44%) to noxious pinch. 4. Of the 70 responsive neurons, 43 (61%) responded to 1 or more of the 4 visceral stimuli, primarily with excitation. Most of these 43 neurons (71%) were responsive to uterine distension, whereas fewer responded to stimulation of the cervix (45%), vagina (29%), or colon (34%). 5. Viscerally responsive neurons were preferentially located in regions bordering or near VB. Only 6 of 22 neurons within the core of VB (27%) responded to visceral stimuli, in contrast with 37 of 48 neurons bordering or near VB (77%). 6. The six viscerally responsive neurons within VB all had somatic receptive fields located primarily on the caudal part of the body and were responsive to only one or two of the four visceral stimuli, usually the uterus. The 37 viscerally responsive neurons bordering or near VB were of 3 types. Neurons of the first type (n = 15) were scattered throughout the areas bordering VB and responded to both somatic and visceral stimuli much like VB neurons, except that they showed more visceral convergence. Neurons of the second type (n = 11) were concentrated at the rostral and dorsal borders of VB and responded only to visceral stimuli, mainly the uterus. Neurons of the third type (n = 11) were concentrated ventrally and had very complex, long-lasting and history-dependent response characteristics to both visceral and somatic stimuli.(ABSTRACT TRUNCATED AT 400 WORDS)


2010 ◽  
Vol 104 (2) ◽  
pp. 675-684 ◽  
Author(s):  
Yen-Chyi Liu ◽  
Jens Herberholz

Crayfish ( Procambarus clarkii ) have bilateral pairs of giant interneurons that control rapid escape movements in response to predatory threats. The medial giant neurons (MGs) can be made to fire an action potential by visual or tactile stimuli directed to the front of the animal and this leads to an escape tail-flip that thrusts the animal directly backward. The lateral giant neurons (LGs) can be made to fire an action potential by strong tactile stimuli directed to the rear of the animal, and this produces flexions of the abdomen that propel the crayfish upward and forward. These observations have led to the notion that the receptive fields of the giant neurons are locally restricted and do not overlap with each other. Using extra- and intracellular electrophysiology in whole animal preparations of juvenile crayfish, we found that the receptive fields of the LGs are far more extensive than previously assumed. The LGs receive excitatory inputs from descending interneurons originating in the brain; these interneurons can be activated by stimulation of the antenna II nerve or the protocerebral tract. In our experiments, descending inputs alone could not cause action potentials in the LGs, but when paired with excitatory postsynaptic potentials elicited by stimulation of tail afferents, the inputs summed to yield firing. Thus the LG escape neurons integrate sensory information received through both rostral and caudal receptive fields, and excitatory inputs that are activated rostrally can bring the LGs' membrane potential closer to threshold. This enhances the animal's sensitivity to an approaching predator, a finding that may generalize to other species with similarly organized escape systems.


1979 ◽  
Vol 42 (4) ◽  
pp. 954-974 ◽  
Author(s):  
S. C. Rosen ◽  
K. R. Weiss ◽  
I. Kupfermann

1. The cells of two clusters of small neurons on the ventrocaudal surface of each hemicerebral ganglion of Aplysia were found to exhibit action potentials following tactile stimuli applied to the skin of the head. These neurons appear to be mechanosensory afferents since they possess axons in the nerves innervating the skin and tactile stimulation evokes spikes with no prepotentials, even when the cell bodies are sufficiently hyperpolarized to block some spikes. The mechanosensory afferents may be primary afferents since the sensory response persists after chemical synaptic transmission is blocked by bathing the ganglion and peripheral structures in seawater with a high-Mg2+ and low-Ca2+ content. 2. The mechanosensory afferents are normally silent and are insensitive to photic, thermal, and chemical stimuli. A punctate tactile stimulus applied to a circumscribed region of skin can evoke a burst of spikes. If the stimulus is maintained at a constant forces, the mechanosensory response slowly adapts over a period of seconds. Repeated brief stimuli have little or no effect on spike frequency within a burst. 3. Approximately 81% of the mechanoafferent neurons have a single ipsilateral receptive field. The fields are located on the lips, the anterior tentacles, the dorsal portion of the head, the neck, or the perioral zone. Because many cells have collateral axons in the cerebral connectives, receptive fields elsewhere on the body are a possibility. The highest receptive-field density was associated with the lips. Within each area, receptive fields vary in size and shape. Adjacent fields overlap and larger fields frequently encompass several smaller ones. The features of some fields appear invariant from one animal to the next. A loose form of topographic organization of the mechanoafferent cells was observed. For example, cells located in the medial cluster have lip receptive fields, and most cells in the posterolateral portion of the lateral clusters have tentacle receptive fields. 4. Intracellular stimulation of individual mechanoafferents evokes short and constant-latency EPSPs in putative motor neurons comprising the identified B-cell clusters of the cerebral ganglion. On the basis of several criteria, these EPSPs appear to be several criteria, these EPSPs appear to be chemically mediated and are monosynaptic. 5. Repetitive intracellular stimulation of individual mechanoafferent neurons at low rates results in a gradual decrement in the amplitude of the EPSPs evoked in B cluster neurons. EPSP amplitude can be restored following brief periods of rest, but subsequent stimulation leads to further diminution of the response. 6. A decremented response cannot be restored by strong mechanical stimulation outside the receptive field of the mechanoafferent or by electrical stimulation of the cerebral nerves or connectives...


1978 ◽  
Vol 41 (6) ◽  
pp. 1511-1534 ◽  
Author(s):  
A. D. Craig ◽  
D. N. Tapper

1. The lateral cervical nucleus (LCN) was investigated with extracellular recordings in the anesthetized cat. A total of 556 LCN units were characterized; the locations of most of these were histologically verified. Half of these had receptive fields on the rostral third of the ipsilateral body surface including the face; 14% had fields on the thorax or abdomen, 33% had fields on the hindlimb or tail, and about 3% had receptive fields larger than one limb. 2. The LCN was observed to be somatotopically organized in experiments using angled microelectrode penetrations. Hindlimb units were dorsolateral, forelimb units ventromedial, and face units most medial within the LCN. In regions where LCN cells were present only in the medial portion of the dorsolateral funiculus, they were all forelimb units. 3. A special subpopulation (17%) of cells were clustered most ventromedially in the LCN. These units had large or disjoint receptive fields, and/or responded to deep, visceral, or noxious stimulation. A third of these did not project in the medial lemniscus (ML); many were synaptically activated by stimulation of the ML. Those that did project in the ML had significantly longer latencies than all other LCN units. It is suggested that this subpopulation contains local LCN interneurons. 4. The specific mechanoreceptor inputs were identified for each of 121 projecting LCN units. Receptor inputs were uniform across each receptive field; that is, each unit that responded to a given receptor type was observed to respond to receptors of that type throughout its receptive field. Input from large-fiber-diameter, velocity-sensitive mechanoreceptors was predominant. The absence of input from slowly adapting type I and II receptors and from joint receptors was confirmed. A significant number of units (17.3%) could be driven by only one receptor type. The LCN sample profile agrees closely with the receptor representation in the hindlimb portion of the spinocervical tract. It is concluded that these data that anatomic specification of convergence occurs in the LCN with respect to receptor connectivity, and that this specification originates in lamina IV of the dorsal horn. 5. Stimulation of the dorsal column nuclei synaptically excited 23% of the LCN units tested. In two cases it was possible to demonstrate, by collision, that this occurred via collaterals of spinocervical tract axons. It is concluded that some spinocervical axons have collaterals terminating in the rostral parts of the dorsal column nuclei.


1987 ◽  
Vol 57 (4) ◽  
pp. 977-1001 ◽  
Author(s):  
H. A. Swadlow ◽  
T. G. Weyand

The intrinsic stability of the rabbit eye was exploited to enable receptive-field analysis of antidromically identified corticotectal (CT) neurons (n = 101) and corticogeniculate (CG) neurons (n = 124) in visual area I of awake rabbits. Eye position was monitored to within 1/5 degrees. We also studied the receptive-field properties of neurons synaptically activated via electrical stimulation of the dorsal lateral geniculate nucleus (LGNd). Whereas most CT neurons had either complex (59%) or motion/uniform (15%) receptive fields, we also found CT neurons with simple (9%) and concentric (4%) receptive fields. Most complex CT cells were broadly tuned to both stimulus orientation and velocity, but only 41% of these cells were directionally selective. We could elicit no visual responses from 6% of CT cells, and these cells had significantly lower conduction velocities than visually responsive CT cells. The median spontaneous firing rates for all classes of CT neurons were 4-8 spikes/s. CG neurons had primarily simple (60%) and concentric (9%) receptive fields, and none of these cells had complex receptive fields. CG simple cells were more narrowly tuned to both stimulus orientation and velocity than were complex CT cells, and most (85%) were directionally selective. Axonal conduction velocities of CG neurons (mean = 1.2 m/s) were much lower than those of CT neurons (mean = 6.4 m/s), and CG neurons that were visually unresponsive (23%) had lower axonal conduction velocities than did visually responsive CG neurons. Some visually unresponsive CG neurons (14%) responded with saccadic eye movements. The median spontaneous firing rates for all classes of CG neurons were less than 1 spike/s. All neurons synaptically activated via LGNd stimulation at latencies of less than 2.0 ms had receptive fields that were not orientation selective (89% motion/uniform, 11% concentric), whereas most cells with orientation-selective receptive fields had considerably longer synaptic latencies. Most short-latency motion/uniform neurons responded to electrical stimulation of the LGNd (and visual area II) with a high-frequency burst (500-900 Hz) of three or more spikes. Action potentials of these neurons were of short duration, thresholds of synaptic activation were low, and spontaneous firing rates were the highest seen in rabbit visual cortex. These properties are similar to those reported for interneurons in several regions in mammalian central nervous system. Nonvisual sensory stimuli that resulted in electroencephalographic arousal (hippocampal theta activity) had a profound effect on the visual responses of many visual cortical neurons.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document