scholarly journals Spontaneously emerging patterns in human visual cortex and their functional connectivity are linked to the patterns evoked by visual stimuli

2020 ◽  
Vol 124 (5) ◽  
pp. 1343-1363
Author(s):  
DoHyun Kim ◽  
Tomer Livne ◽  
Nicholas V. Metcalf ◽  
Maurizio Corbetta ◽  
Gordon L. Shulman

Spontaneous brain activity was once thought to reflect only noise, but evidence of strong spatiotemporal regularities has motivated a search for functional explanations. Here we show that the spatial pattern of spontaneous activity in human high-level and early visual cortex is related to the spatial patterns evoked by stimuli. Moreover, these patterns partly govern spontaneous spatiotemporal interactions between regions, so-called functional connectivity. These results support the hypothesis that spontaneous activity serves a representational function.

Brain ◽  
2020 ◽  
Author(s):  
Avital Hahamy ◽  
Meytal Wilf ◽  
Boris Rosin ◽  
Marlene Behrmann ◽  
Rafael Malach

Abstract Spontaneous activity of the human brain has been well documented, but little is known about the functional role of this ubiquitous neural phenomenon. It has previously been hypothesized that spontaneous brain activity underlies unprompted (internally generated) behaviour. We tested whether spontaneous brain activity might underlie internally-generated vision by studying the cortical visual system of five blind/visually-impaired individuals who experience vivid visual hallucinations (Charles Bonnet syndrome). Neural populations in the visual system of these individuals are deprived of external input, which may lead to their hyper-sensitization to spontaneous activity fluctuations. To test whether these spontaneous fluctuations can subserve visual hallucinations, the functional MRI brain activity of participants with Charles Bonnet syndrome obtained while they reported their hallucinations (spontaneous internally-generated vision) was compared to the: (i) brain activity evoked by veridical vision (externally-triggered vision) in sighted controls who were presented with a visual simulation of the hallucinatory streams; and (ii) brain activity of non-hallucinating blind controls during visual imagery (cued internally-generated vision). All conditions showed activity spanning large portions of the visual system. However, only the hallucination condition in the Charles Bonnet syndrome participants demonstrated unique temporal dynamics, characterized by a slow build-up of neural activity prior to the reported onset of hallucinations. This build-up was most pronounced in early visual cortex and then decayed along the visual hierarchy. These results suggest that, in the absence of external visual input, a build-up of spontaneous fluctuations in early visual cortex may activate the visual hierarchy, thereby triggering the experience of vision.


2019 ◽  
Author(s):  
DoHyun Kim ◽  
Tomer Livne ◽  
Nicholas V. Metcalf ◽  
Maurizio Corbetta ◽  
Gordon L. Shulman

AbstractThe function of spontaneous brain activity is an important issue in neuroscience. Here we test the hypothesis that patterns of spontaneous activity code representational patterns evoked by stimuli and tasks. We compared in human visual cortex multi-vertex patterns of spontaneous activity to patterns evoked by ecological visual stimuli (faces, bodies, scenes) and low-level visual features (e.g. phase-scrambled faces). Specifically, we identified regions that preferred particular stimulus categories during localizer scans (e.g. extra-striate body area for bodies), measured multi-vertex patterns for each category during event-related task scans, and then correlated over vertices these stimulus-evoked patterns to the pattern measured on each frame of resting-state scans. The mean correlation coefficient was essentially zero for all regions/stimulus categories, indicating that resting multi-vertex patterns were not biased toward particular stimulus-evoked patterns. However, the spread of correlation coefficients between stimulus-evoked and resting patterns, i.e. both positive and negative, was significantly greater for the preferred stimulus category of an ROI (e.g. body category in body-preferring ROIs). The relationship between spontaneous and stimulus-evoked multi-vertex patterns also governed the temporal correlation or functional connectivity of patterns of spontaneous activity between individual regions (pattern-based functional connectivity). Resting patterns related to an object category fluctuated preferentially between ROIs preferring the same category, and patterns related to different categories fluctuated independently within their respective preferred ROIs (e.g. body- and scene-related multi-vertex patterns within body- and scene-preferring ROIs). These results support the general proposal that spontaneous multi-vertex activity patterns are linked to stimulus-evoked patterns, consistent with a representational function for spontaneous activity.


2013 ◽  
Vol 110 (8) ◽  
pp. 1811-1821 ◽  
Author(s):  
Dobromir Rahnev ◽  
Peter Kok ◽  
Moniek Munneke ◽  
Linda Bahdo ◽  
Floris P. de Lange ◽  
...  

Continuous theta burst stimulation (cTBS) is a technique that allows for altering of brain activity. Research to date has focused on the effect of cTBS on the target area, but less is known about its effects on the resting state functional connectivity between different brain regions. We investigated this issue by applying cTBS to the occipital cortex and probing its influence in retinotopically defined regions in early visual cortex using functional MRI. We found that occipital cTBS reliably decreased the resting state functional connectivity (i.e., the correlation of spontaneous activity) between regions of the early visual cortex. In the context of a perceptual task, such an effect could mean that cTBS affects the strength of the perceptual signal, its variability, or both. We investigated this issue in a second experiment in which subjects performed a perceptual discrimination task and indicated their level of certainty on each trial. The results showed that occipital cTBS decreased both subjects' accuracy and confidence. Signal detection modeling suggested that these impairments resulted primarily from a decreased strength of the perceptual signal, with a nonsignificant trend of a decrease in signal variability. We discuss the implications of these experiments for understanding the mechanisms by which cTBS influences brain activity and perceptual processes.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Yumei Wang ◽  
Xiaochuan Zhao ◽  
Shunjiang Xu ◽  
Lulu Yu ◽  
Lan Wang ◽  
...  

Most patients with mild cognitive impairment (MCI) are thought to be in an early stage of Alzheimer’s disease (AD). Resting-state functional magnetic resonance imaging reflects spontaneous brain activity and/or the endogenous/background neurophysiological process of the human brain. Regional homogeneity (ReHo) rapidly maps regional brain activity across the whole brain. In the present study, we used the ReHo index to explore whole brain spontaneous activity pattern in MCI. Our results showed that MCI subjects displayed an increased ReHo index in the paracentral lobe, precuneus, and postcentral and a decreased ReHo index in the medial temporal gyrus and hippocampus. Impairments in the medial temporal gyrus and hippocampus may serve as important markers distinguishing MCI from healthy aging. Moreover, the increased ReHo index observed in the postcentral and paracentral lobes might indicate compensation for the cognitive function losses in individuals with MCI.


2020 ◽  
Author(s):  
Munendo Fujimichi ◽  
Hiroki Yamamoto ◽  
Jun Saiki

Are visual representations in the human early visual cortex necessary for visual working memory (VWM)? Previous studies suggest that VWM is underpinned by distributed representations across several brain regions, including the early visual cortex. Notably, in these studies, participants had to memorize images under consistent visual conditions. However, in our daily lives, we must retain the essential visual properties of objects despite changes in illumination or viewpoint. The role of brain regions—particularly the early visual cortices—in these situations remains unclear. The present study investigated whether the early visual cortex was essential for achieving stable VWM. Focusing on VWM for object surface properties, we conducted fMRI experiments while male and female participants performed a delayed roughness discrimination task in which sample and probe spheres were presented under varying illumination. By applying multi-voxel pattern analysis to brain activity in regions of interest, we found that the ventral visual cortex and intraparietal sulcus were involved in roughness VWM under changing illumination conditions. In contrast, VWM was not supported as robustly by the early visual cortex. These findings show that visual representations in the early visual cortex alone are insufficient for the robust roughness VWM representation required during changes in illumination.


2014 ◽  
Vol 98 (2) ◽  
pp. 87-91
Author(s):  
Yasuhiro Kawashima ◽  
Hiroyuki Yamashiro ◽  
Hiroki Yamamoto ◽  
Tomokazu Murase ◽  
Yoshikatsu Ichimura ◽  
...  

2019 ◽  
Vol 29 (11) ◽  
pp. 4628-4645 ◽  
Author(s):  
Andrea Scalabrini ◽  
Sjoerd J H Ebisch ◽  
Zirui Huang ◽  
Simone Di Plinio ◽  
Mauro Gianni Perrucci ◽  
...  

Abstract The spontaneous activity of the brain is characterized by an elaborate temporal structure with scale-free properties as indexed by the power law exponent (PLE). We test the hypothesis that spontaneous brain activity modulates task-evoked activity during interactions with animate versus inanimate stimuli. For this purpose, we developed a paradigm requiring participants to actively touch either animate (real hand) or inanimate (mannequin hand) stimuli. Behaviorally, participants perceived the animate target as closer in space, temporally more synchronous with their own self, and more personally relevant, compared with the inanimate. Neuronally, we observed a modulation of task-evoked activity by animate versus inanimate interactions in posterior insula, in medial prefrontal cortex, comprising anterior cingulate cortex, and in medial superior frontal gyrus. Among these regions, an increased functional connectivity was shown between posterior insula and perigenual anterior cingulate cortex (PACC) during animate compared with inanimate interactions and during resting state. Importantly, PLE during spontaneous brain activity in PACC correlated positively with PACC task-evoked activity during animate versus inanimate stimuli. In conclusion, we demonstrate that brain spontaneous activity in PACC can be related to the distinction between animate and inanimate stimuli and thus might be specifically tuned to align our brain with its animate environment.


2009 ◽  
Vol 6 (6) ◽  
pp. 541-553 ◽  
Author(s):  
Christian Sorg ◽  
Valentin Riedl ◽  
Robert Perneczky ◽  
Alexander Kurz ◽  
Afra Wohlschlager

2011 ◽  
Vol 105 (6) ◽  
pp. 2753-2763 ◽  
Author(s):  
Gaëlle Doucet ◽  
Mikaël Naveau ◽  
Laurent Petit ◽  
Nicolas Delcroix ◽  
Laure Zago ◽  
...  

Spontaneous brain activity was mapped with functional MRI (fMRI) in a sample of 180 subjects while in a conscious resting-state condition. With the use of independent component analysis (ICA) of each individual fMRI signal and classification of the ICA-defined components across subjects, a set of 23 resting-state networks (RNs) was identified. Functional connectivity between each pair of RNs was assessed using temporal correlation analyses in the 0.01- to 0.1-Hz frequency band, and the corresponding set of correlation coefficients was used to obtain a hierarchical clustering of the 23 RNs. At the highest hierarchical level, we found two anticorrelated systems in charge of intrinsic and extrinsic processing, respectively. At a lower level, the intrinsic system appears to be partitioned in three modules that subserve generation of spontaneous thoughts (M1a; default mode), inner maintenance and manipulation of information (M1b), and cognitive control and switching activity (M1c), respectively. The extrinsic system was found to be made of two distinct modules: one including primary somatosensory and auditory areas and the dorsal attentional network (M2a) and the other encompassing the visual areas (M2b). Functional connectivity analyses revealed that M1b played a central role in the functioning of the intrinsic system, whereas M1c seems to mediate exchange of information between the intrinsic and extrinsic systems.


2020 ◽  
Author(s):  
bingbo bao ◽  
xuyun hua ◽  
haifeng wei ◽  
pengbo luo ◽  
hongyi zhu ◽  
...  

Abstract Background: Amputation in adults is a serious condition and most patients were associated with the remapping of representations in motor and sensory brain network. Methods: The present study includes 8 healthy volunteers and 16 patients with amputation. We use resting-state fMRI to investigate the local and extent brain plasticity in patients suffering from amputation simultaneously. Both the amplitude of low-frequency fluctuations (ALFF) and degree centrality (DC) were used for the assessment of neuroplasticity in central level. Results: We described changes in spatial patterns of intrinsic brain activity and functional connectivity in amputees in the present study and we found that not only the sensory and motor cortex, but also the related brain regions involved in the functional plasticity after upper extremity deafferentation. Conclusion: Our findings showed local and extensive cortical changes in the sensorimotor and cognitive-related brain regions, which may imply the dysfunction in not only sensory and motor function, but also sensorimotor integration and motor plan. The activation and intrinsic connectivity in the brain changed a lot showed correlation with the deafferentation status.


Sign in / Sign up

Export Citation Format

Share Document