scholarly journals Longitudinal Spatial Patterns of Intrinsic Brain Activity and Functional Connectivity in Upper Limb Amputees Patients

2020 ◽  
Author(s):  
bingbo bao ◽  
xuyun hua ◽  
haifeng wei ◽  
pengbo luo ◽  
hongyi zhu ◽  
...  

Abstract Background: Amputation in adults is a serious condition and most patients were associated with the remapping of representations in motor and sensory brain network. Methods: The present study includes 8 healthy volunteers and 16 patients with amputation. We use resting-state fMRI to investigate the local and extent brain plasticity in patients suffering from amputation simultaneously. Both the amplitude of low-frequency fluctuations (ALFF) and degree centrality (DC) were used for the assessment of neuroplasticity in central level. Results: We described changes in spatial patterns of intrinsic brain activity and functional connectivity in amputees in the present study and we found that not only the sensory and motor cortex, but also the related brain regions involved in the functional plasticity after upper extremity deafferentation. Conclusion: Our findings showed local and extensive cortical changes in the sensorimotor and cognitive-related brain regions, which may imply the dysfunction in not only sensory and motor function, but also sensorimotor integration and motor plan. The activation and intrinsic connectivity in the brain changed a lot showed correlation with the deafferentation status.

2020 ◽  
Author(s):  
Bingbo Bao ◽  
Lei Duan ◽  
Haifeng Wei ◽  
Pengbo Luo ◽  
Hongyi Zhu ◽  
...  

Abstract Background: Amputation in adults is a serious condition and previous studies suggested a remapping of representations in motor and sensory brain networks. However, little is known about the longitudinal reorganizing pattern in upper limb amputees’ patients.Methods: The present study included 8 healthy volunteers and 16 patients with amputation. We use resting-state fMRI to investigate the local and large-scale brain plasticity in patients suffering from amputation. Both the amplitude of low-frequency fluctuations (ALFF) and degree centrality (DC) were used for the assessment of neuroplasticity.Results: We described changes in spatial patterns of intrinsic brain activity and functional connectivity in amputees; and we found that not only the sensory and motor cortex, but also the cognitive-related brain regions involved in the functional plasticity after upper extremity deafferentation.Conclusion: Our findings showed local and extensive cortical changes in the sensorimotor and cognitive-related brain regions, which may imply the dysfunction in not only sensory and motor function, but also sensorimotor integration and motor plan. The changes in activation and intrinsic connectivity in the brain showed correlation with the deafferentation status.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Baohui Jia ◽  
Zhishun Liu ◽  
Baoquan Min ◽  
Zhenchang Wang ◽  
Aihong Zhou ◽  
...  

Accumulating neuroimaging studies in humans have shown that acupuncture can modulate a widely distributed brain network in mild cognitive impairment (MCI) and Alzheimer’s disease (AD) patients. Acupuncture at different acupoints could exert different modulatory effects on the brain network. However, whether acupuncture at real or sham acupoints can produce different effects on the brain network in MCI or AD patients remains unclear. Using resting-state fMRI, we reported that acupuncture at Taixi (KI3) induced amplitude of low-frequency fluctuation (ALFF) change of different brain regions in MCI patients from those shown in the healthy controls. In MCI patients, acupuncture at KI3 increased or decreased ALFF in the different regions from those activated by acupuncture in the healthy controls. Acupuncture at the sham acupoint in MCI patients activated the different brain regions from those in healthy controls. Therefore, we concluded that acupuncture displays more significant effect on neuronal activities of the above brain regions in MCI patients than that in healthy controls. Acupuncture at KI3 exhibits different effects on the neuronal activities of the brain regions from acupuncture at sham acupoint, although the difference is only shown at several regions due to the close distance between the above points.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Yu-Chen Chen ◽  
Jian Zhang ◽  
Xiao-Wei Li ◽  
Wenqing Xia ◽  
Xu Feng ◽  
...  

Objective. Subjective tinnitus is hypothesized to arise from aberrant neural activity; however, its neural bases are poorly understood. To identify aberrant neural networks involved in chronic tinnitus, we compared the resting-state functional magnetic resonance imaging (fMRI) patterns of tinnitus patients and healthy controls.Materials and Methods. Resting-state fMRI measurements were obtained from a group of chronic tinnitus patients (n=29) with normal hearing and well-matched healthy controls (n=30). Regional homogeneity (ReHo) analysis and functional connectivity analysis were used to identify abnormal brain activity; these abnormalities were compared to tinnitus distress.Results. Relative to healthy controls, tinnitus patients had significant greater ReHo values in several brain regions including the bilateral anterior insula (AI), left inferior frontal gyrus, and right supramarginal gyrus. Furthermore, the left AI showed enhanced functional connectivity with the left middle frontal gyrus (MFG), while the right AI had enhanced functional connectivity with the right MFG; these measures were positively correlated with Tinnitus Handicap Questionnaires (r=0.459,P=0.012andr=0.479,P=0.009, resp.).Conclusions. Chronic tinnitus patients showed abnormal intra- and interregional synchronization in several resting-state cerebral networks; these abnormalities were correlated with clinical tinnitus distress. These results suggest that tinnitus distress is exacerbated by attention networks that focus on internally generated phantom sounds.


2021 ◽  
Author(s):  
Tomokazu Tsurugizawa ◽  
Daisuke Yoshimaru

AbstractA few studies have compared the static functional connectivity between awake and anaesthetized states in rodents by resting-state fMRI. However, impact of anaesthesia on static and dynamic fluctuations in functional connectivity has not been fully understood. Here, we developed a resting-state fMRI protocol to perform awake and anaesthetized functional MRI in the same mice. Static functional connectivity showed a widespread decrease under anaesthesia, such as when under isoflurane or a mixture of isoflurane and medetomidine. Several interhemispheric connections were key connections for anaesthetized condition from awake. Dynamic functional connectivity demonstrates the shift from frequent broad connections across the cortex, the hypothalamus, and the auditory-visual cortex to frequent local connections within the cortex only. Fractional amplitude of low frequency fluctuation in the thalamic nuclei decreased under both anaesthesia. These results indicate that typical anaesthetics for functional MRI alters the spatiotemporal profile of the dynamic brain network in subcortical regions, including the thalamic nuclei and limbic system.HighlightsResting-state fMRI was compared between awake and anaesthetized in the same mice.Anaesthesia induced a widespread decrease of static functional connectivity.Anaesthesia strengthened local connections within the cortex.fALFF in the thalamus was decreased by anaesthesia.


2016 ◽  
Author(s):  
Chao-Gan Yan ◽  
Zhen Yang ◽  
Stanley J. Colcombe ◽  
Xi-Nian Zuo ◽  
Michael P. Milham

ABSTRACTVarious resting-state fMRI (R-fMRI) measures have been developed to characterize intrinsic brain activity. While each of these measures has gained a growing presence in the literature, questions remain regarding the common and unique aspects these indices capture. The present work provided a comprehensive examination of inter-individual variation and intra-individual temporal variation for commonly used measures, including fractional amplitude of low frequency fluctuations, regional homogeneity, voxel-mirrored homotopic connectivity, network centrality and global signal correlation. Regardless of whether examining intra-individual or inter-individual variation, we found that these definitionally distinct R-fMRI indices tend to exhibit a relatively high degree of covariation, which doesn’t exist in phase randomized surrogate data. As a measure of intrinsic brain function, concordance for R-fMRI indices was negatively correlated with age across individuals (i.e., concordance among functional indices decreased with age). To understand the functional significance of concordance, we noted that higher concordance was generally associated with higher strengths of R-fMRI indices, regardless of whether looking through the lens of inter-individual (i.e., high vs. low concordance participants) or intra-individual (i.e., high vs. low concordance states identified via temporal dynamic analyses) differences. We also noted a linear increase in functional concordance together with the R-fMRI indices through the scan, which may suggest a decrease in arousal. The current study demonstrated an enriched picture regarding the relationship among the R-fMRI indices, as well as provided new insights in examining dynamic states within and between individuals.


2017 ◽  
Author(s):  
David E. Warren ◽  
Matthew J. Sutterer ◽  
Joel Bruss ◽  
Taylor J. Abel ◽  
Andrew Jones ◽  
...  

AbstractFunctional connectivity, as measured by resting-state fMRI, has proven a powerful method for studying brain systems in the context of behavior, development, and disease states. However, the relationship of functional connectivity to structural connectivity remains unclear. If functional connectivity relies on structural connectivity, then anatomical isolation of a brain region should eliminate functional connectivity with other brain regions. We tested this by measuring functional connectivity of the surgically disconnected temporal pole in resection patients (N=5; mean age 37; 2F, 3M). Functional connectivity was evaluated based on coactivation of whole-brain fMRI data with the average low-frequency BOLD signal from disconnected tissue in each patient. In sharp contrast to our prediction, we observed significant functional connectivity between the disconnected temporal pole and remote brain regions in each disconnection case. These findings raise important questions about the neural bases of functional connectivity measures derived from the fMRI BOLD signal.


2021 ◽  
Vol 15 ◽  
Author(s):  
Bei Luo ◽  
Yue Lu ◽  
Chang Qiu ◽  
Wenwen Dong ◽  
Chen Xue ◽  
...  

BackgroundTransient improvement in motor symptoms are immediately observed in patients with Parkinson’s disease (PD) after an electrode has been implanted into the subthalamic nucleus (STN) for deep brain stimulation (DBS). This phenomenon is known as the microlesion effect (MLE). However, the underlying mechanisms of MLE is poorly understood.PurposeWe utilized resting state functional MRI (rs-fMRI) to evaluate changes in spontaneous brain activity and networks in PD patients during the microlesion period after DBS.MethodOverall, 37 PD patients and 13 gender- and age-matched healthy controls (HCs) were recruited for this study. Rs-MRI information was collected from PD patients three days before DBS and one day after DBS, whereas the HCs group was scanned once. We utilized the amplitude of low-frequency fluctuation (ALFF) method in order to analyze differences in spontaneous whole-brain activity among all subjects. Furthermore, functional connectivity (FC) was applied to investigate connections between other brain regions and brain areas with significantly different ALFF before and after surgery in PD patients.ResultRelative to the PD-Pre-DBS group, the PD-Post-DBS group had higher ALFF in the right putamen, right inferior frontal gyrus, right precentral gyrus and lower ALFF in right angular gyrus, right precuneus, right posterior cingulate gyrus (PCC), left insula, left middle temporal gyrus (MTG), bilateral middle frontal gyrus and bilateral superior frontal gyrus (dorsolateral). Functional connectivity analysis revealed that these brain regions with significantly different ALFF scores demonstrated abnormal FC, largely in the temporal, prefrontal cortices and default mode network (DMN).ConclusionThe subthalamic microlesion caused by DBS in PD was found to not only improve the activity of the basal ganglia-thalamocortical circuit, but also reduce the activity of the DMN and executive control network (ECN) related brain regions. Results from this study provide new insights into the mechanism of MLE.


Sign in / Sign up

Export Citation Format

Share Document