scholarly journals L-type calcium channels refine the neural population code of sound level

2016 ◽  
Vol 116 (6) ◽  
pp. 2550-2563 ◽  
Author(s):  
Calum Alex Grimsley ◽  
David Brian Green ◽  
Shobhana Sivaramakrishnan

The coding of sound level by ensembles of neurons improves the accuracy with which listeners identify how loud a sound is. In the auditory system, the rate at which neurons fire in response to changes in sound level is shaped by local networks. Voltage-gated conductances alter local output by regulating neuronal firing, but their role in modulating responses to sound level is unclear. We tested the effects of L-type calcium channels (CaL: CaV1.1–1.4) on sound-level coding in the central nucleus of the inferior colliculus (ICC) in the auditory midbrain. We characterized the contribution of CaL to the total calcium current in brain slices and then examined its effects on rate-level functions (RLFs) in vivo using single-unit recordings in awake mice. CaL is a high-threshold current and comprises ∼50% of the total calcium current in ICC neurons. In vivo, CaL activates at sound levels that evoke high firing rates. In RLFs that increase monotonically with sound level, CaL boosts spike rates at high sound levels and increases the maximum firing rate achieved. In different populations of RLFs that change nonmonotonically with sound level, CaL either suppresses or enhances firing at sound levels that evoke maximum firing. CaL multiplies the gain of monotonic RLFs with dynamic range and divides the gain of nonmonotonic RLFs with the width of the RLF. These results suggest that a single broad class of calcium channels activates enhancing and suppressing local circuits to regulate the sensitivity of neuronal populations to sound level.

2016 ◽  
Vol 115 (1) ◽  
pp. 193-207 ◽  
Author(s):  
Mitchell L. Day ◽  
Bertrand Delgutte

At lower levels of sensory processing, the representation of a stimulus feature in the response of a neural population can vary in complex ways across different stimulus intensities, potentially changing the amount of feature-relevant information in the response. How higher-level neural circuits could implement feature decoding computations that compensate for these intensity-dependent variations remains unclear. Here we focused on neurons in the inferior colliculus (IC) of unanesthetized rabbits, whose firing rates are sensitive to both the azimuthal position of a sound source and its sound level. We found that the azimuth tuning curves of an IC neuron at different sound levels tend to be linear transformations of each other. These transformations could either increase or decrease the mutual information between source azimuth and spike count with increasing level for individual neurons, yet population azimuthal information remained constant across the absolute sound levels tested (35, 50, and 65 dB SPL), as inferred from the performance of a maximum-likelihood neural population decoder. We harnessed evidence of level-dependent linear transformations to reduce the number of free parameters in the creation of an accurate cross-level population decoder of azimuth. Interestingly, this decoder predicts monotonic azimuth tuning curves, broadly sensitive to contralateral azimuths, in neurons at higher levels in the auditory pathway.


2019 ◽  
Author(s):  
Zac Bowen ◽  
Daniel E. Winkowski ◽  
Saurav Seshadri ◽  
Dietmar Plenz ◽  
Patrick O. Kanold

AbstractThe primary auditory cortex processes acoustic sequences for the perception of behaviorally meaningful sounds such as speech. Sound information arrives at its input layer 4 from where activity propagates to associative layer 2/3. It is currently not known whether there is a particular organization of neuronal population activity that is stable across layers and sound levels during sound processing. We used in vivo 2-photon imaging of pyramidal neurons in cortical layers L4 and L2/3 of mouse A1 to characterize the populations of neurons that were active spontaneously, i.e. in the absence of a sound stimulus, and those recruited by single-frequency tonal stimuli at different sound levels. Single-frequency sounds recruited neurons of widely ranging frequency selectivity in both layers. We defined neural ensembles as neurons being active within or during successive temporal windows at the temporal resolution of our imaging. For both layers, neuronal ensembles were highly variable in size during spontaneous activity as well as during sound presentation. Ensemble sizes distributed according to power laws, the hallmark of neuronal avalanches, and were similar across sound levels. Avalanches activated by sound were composed of neurons with diverse tuning preference, yet with selectivity independent of avalanche size. Thus, spontaneous and evoked activity in both L4 and L2/3 of A1 are composed of neuronal avalanches with similar power law relationships. Our results demonstrate network principles linked to maximal dynamic range, optimal information transfer and matching complexity between L4 and L2/3 to shape population activity in auditory cortex.


2004 ◽  
Vol 287 (1) ◽  
pp. G134-G142 ◽  
Author(s):  
Xiaochun Bian ◽  
Xiaoping Zhou ◽  
James J. Galligan

Currents carried by L-, N-, and P/Q-type calcium channels do not account for the total calcium current in myenteric neurons. This study identified all calcium channels expressed by guinea pig small intestinal myenteric neurons maintained in primary culture. Calcium currents were recorded using whole cell techniques. Depolarizations (holding potential = −70 mV) elicited inward currents that were blocked by CdCl2 (100 μM). Combined application of nifedipine (blocks L-type channels), Ω-conotoxin GVIA (blocks N-type channels), and Ω-agatoxin IVA (blocks P/Q-type channels) inhibited calcium currents by 56%. Subsequent addition of the R-type calcium channel antagonists, NiCl2 (50 μM) or SNX-482 (0.1 μM), abolished the residual calcium current. NiCl2 or SNX-482 alone inhibited calcium currents by 46%. The activation threshold for R-type calcium currents was −30 mV, the half-activation voltage was −5.2 ± 5 mV, and the voltage sensitivity was 17 ± 3 mV. R-type currents activated fully in 10 ms at 10 mV. R-type calcium currents inactivated in 1 s at 10 mV, and they inactivated (voltage sensitivity of 16 ± 1 mV) with a half-inactivation voltage of −76 ± 5 mV. These studies have accounted for all of the calcium channels in myenteric neurons. The data indicate that R-type calcium channels make the largest contribution to the total calcium current in myenteric neurons. The relatively positive half-activation voltage and rapid activation kinetics suggest that R-type channels could contribute to calcium entry during somal action potentials or during action potential-induced neurotransmitter release.


2012 ◽  
Vol 108 (1) ◽  
pp. 69-82 ◽  
Author(s):  
Bo Wen ◽  
Grace I. Wang ◽  
Isabel Dean ◽  
Bertrand Delgutte

Auditory adaptation to sound-level statistics occurs as early as in the auditory nerve (AN), the first stage of neural auditory processing. In addition to firing rate adaptation characterized by a rate decrement dependent on previous spike activity, AN fibers show dynamic range adaptation, which is characterized by a shift of the rate-level function or dynamic range toward the most frequently occurring levels in a dynamic stimulus, thereby improving the precision of coding of the most common sound levels (Wen B, Wang GI, Dean I, Delgutte B. J Neurosci 29: 13797–13808, 2009). We investigated the time course of dynamic range adaptation by recording from AN fibers with a stimulus in which the sound levels periodically switch from one nonuniform level distribution to another (Dean I, Robinson BL, Harper NS, McAlpine D. J Neurosci 28: 6430–6438, 2008). Dynamic range adaptation occurred rapidly, but its exact time course was difficult to determine directly from the data because of the concomitant firing rate adaptation. To characterize the time course of dynamic range adaptation without the confound of firing rate adaptation, we developed a phenomenological “dual adaptation” model that accounts for both forms of AN adaptation. When fitted to the data, the model predicts that dynamic range adaptation occurs as rapidly as firing rate adaptation, over 100–400 ms, and the time constants of the two forms of adaptation are correlated. These findings suggest that adaptive processing in the auditory periphery in response to changes in mean sound level occurs rapidly enough to have significant impact on the coding of natural sounds.


Genetics ◽  
2021 ◽  
Author(s):  
Christopher A Piggott ◽  
Zilu Wu ◽  
Stephen Nurrish ◽  
Suhong Xu ◽  
Joshua M Kaplan ◽  
...  

Abstract The junctophilin family of proteins tether together plasma membrane (PM) and endoplasmic reticulum (ER) membranes, and couple PM- and ER-localized calcium channels. Understanding in vivo functions of junctophilins is of great interest for dissecting the physiological roles of ER-PM contact sites. Here, we show that the sole C. elegans junctophilin JPH-1 localizes to discrete membrane contact sites in neurons and muscles and has important tissue-specific functions. jph-1 null mutants display slow growth and development due to weaker contraction of pharyngeal muscles, leading to reduced feeding. In the body wall muscle, JPH-1 co-localizes with the PM-localized EGL-19 voltage-gated calcium channel and ER-localized UNC-68/RyR calcium channel, and is required for animal movement. In neurons, JPH-1 co-localizes with the membrane contact site protein Extended-SYnaptoTagmin 2 (ESYT-2) in soma, and is present near presynaptic release sites. Interestingly, jph-1 and esyt-2 null mutants display mutual suppression in their response to aldicarb, suggesting that JPH-1 and ESYT-2 have antagonistic roles in neuromuscular synaptic transmission. Additionally, we find an unexpected cell non-autonomous effect of jph-1 in axon regrowth after injury. Genetic double mutant analysis suggests that jph-1 functions in overlapping pathways with two PM-localized voltage-gated calcium channels, egl-19 and unc-2, and unc-68/RyR for animal health and development. Finally, we show that jph-1 regulates the colocalization of EGL-19 and UNC-68 and that unc-68/RyR is required for JPH-1 localization to ER-PM puncta. Our data demonstrate important roles for junctophilin in cellular physiology, and also provide insights into how junctophilin functions together with other calcium channels in vivo.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 977.1-977
Author(s):  
A. Potapova ◽  
O. Egorova ◽  
O. Alekseeva ◽  
A. Volkov ◽  
S. Radenska-Lopovok

Background:Ultrasound (US) is a non-invasive and safe imaging method that allows in vivo differentiation of the morphological structures of subcutaneous fat (SCF) tissue in in normal and pathology.Objectives:Reveal features of ultrasound changes in SCF in panniculitis (Pn).Methods:57 patients (f – 45, m - 12) aged 18 - 67 years with an initial diagnosis of erythema nodosum and a disease duration of 3.6 ± 1.4 years were examined. In addition to the general clinical examination, a computed tomography of the chest organs and a pathomorphological examination of a skin biopsy from the site of the node were performed. Ultrasound was performed on a MyLabTwice apparatus (ESAOTE, Italy) using a multi-frequency linear transducer (10-18 MHz) with the PD technique, the parameters of which were adapted for recording low-speed flows (PRF 300-600 Hz, low filter, dynamic range - 20-40 dB), the presence of vascularization was assessed not only in the affected area, but also on the contralateral side using high-energy Doppler.Results:33 patients were diagnosed with septal Pn (SPn), 24 - lobular Pn (LPn). In all cases, the diagnosis was verified by histological examination. Ultrasound made it possible to assess the thickness, echoicity and vascularization of the SCF. In 35 patients, significant thickening of the SCF was revealed (as compared to the contralateral side), of which in 14 cases with SPn, in 21 - with LPn. Significant diffuse thickening of the SCF with the contralateral side was observed in 18 patients, incl. in 12 (66%) patients with LPn. Limited thickening was more typical for SPn (73%). A significant increase in the echoicity of the SCF was noted in all forms of Pn. A “lobular” echo pattern with an anechogenic environment was observed in 25 patients, of which 18 (72%) had LPn. An increase in vascularization compared to the contralateral side was recorded in 30 cases (SPn-17, LPn-13).Conclusion:The obtained preliminary results indicate the important role of ultrasound in assessing the depth and prevalence of the inflammatory process at Pn. To clarify the diagnostic value of this method, further studies are needed on a larger sample of patients.Disclosure of Interests:None declared


2021 ◽  
Vol 10 (14) ◽  
pp. 3078
Author(s):  
Sara Akbarzadeh ◽  
Sungmin Lee ◽  
Chin-Tuan Tan

In multi-speaker environments, cochlear implant (CI) users may attend to a target sound source in a different manner from normal hearing (NH) individuals during a conversation. This study attempted to investigate the effect of conversational sound levels on the mechanisms adopted by CI and NH listeners in selective auditory attention and how it affects their daily conversation. Nine CI users (five bilateral, three unilateral, and one bimodal) and eight NH listeners participated in this study. The behavioral speech recognition scores were collected using a matrix sentences test, and neural tracking to speech envelope was recorded using electroencephalography (EEG). Speech stimuli were presented at three different levels (75, 65, and 55 dB SPL) in the presence of two maskers from three spatially separated speakers. Different combinations of assisted/impaired hearing modes were evaluated for CI users, and the outcomes were analyzed in three categories: electric hearing only, acoustic hearing only, and electric + acoustic hearing. Our results showed that increasing the conversational sound level degraded the selective auditory attention in electrical hearing. On the other hand, increasing the sound level improved the selective auditory attention for the acoustic hearing group. In the NH listeners, however, increasing the sound level did not cause a significant change in the auditory attention. Our result implies that the effect of the sound level on selective auditory attention varies depending on the hearing modes, and the loudness control is necessary for the ease of attending to the conversation by CI users.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Piotr F. Czempik ◽  
Agnieszka Jarosińska ◽  
Krystyna Machlowska ◽  
Michał P. Pluta

Abstract Sleep disruption is common in patients in the intensive care unit (ICU). The aim of the study was to measure sound levels during sleep-protected time in the ICU, determine sources of sound, assess the impact of sound levels and patient-related factors on duration and quality of patients' sleep. The study was performed between 2018 and 2019. A commercially available smartphone application was used to measure ambient sound levels. Sleep duration was measured using the Patient's Sleep Behaviour Observational Tool. Sleep quality was assessed using the Richards-Campbell Sleep Questionnaire (RCSQ). The study population comprised 18 (58%) men and 13 (42%) women. There were numerous sources of sound. The median duration of sleep was 5 (IQR 3.5–5.7) hours. The median score on the RCSQ was 49 (IQR 28–71) out of 100 points. Sound levels were negatively correlated with sleep duration. The cut-off peak sound level, above which sleep duration was shorter than mean sleep duration in the cohort, was 57.9 dB. Simple smartphone applications can be useful to estimate sound levels in the ICU. There are numerous sources of sound in the ICU. Individual units should identify and eliminate their own sources of sound. Sources of sound producing peak sound levels above 57.9 dB may lead to shorter sleep and should be eliminated from the ICU environment. The sound levels had no effect on sleep quality.


Author(s):  
Shawn Goodman ◽  
Sriram Boothalingam ◽  
Jeffery T Lichtenhan

Functional outcomes of medial olivocochlear reflex (MOCR) activation, such as improved hearing in background noise and protection from noise damage, involve moderate to high sound levels. Previous noninvasive measurements of MOCR in humans focused primarily on otoacoustic emissions (OAEs) evoked at low sound levels. Interpreting MOCR effects on OAEs at higher levels is complicated by the possibility of the middle-ear muscle reflex and by components of OAEs arising from different locations along the length of the cochlear spiral. We overcame these issues by presenting click stimuli at a very slow rate and by time-frequency windowing the resulting click-evoked (CE)OAEs into short-latency (SL) and long-latency (LL) components. We characterized the effects of MOCR on CEOAE components using multiple measures to more comprehensively assess these effects throughout much of the dynamic range of hearing. These measures included CEOAE amplitude attenuation, equivalent input attenuation, phase, and slope of growth functions. Results show that MOCR effects are smaller on SL components than LL components, consistent with SL components being generated slightly basal of the characteristic frequency region. Amplitude attenuation measures showed the largest effects at the lowest stimulus levels, but slope change and equivalent input attenuation measures did not decrease at higher stimulus levels. These latter measures are less commonly reported and may provide insight into the variability in listening performance and noise susceptibility seen across individuals.


Sign in / Sign up

Export Citation Format

Share Document