scholarly journals Neural Basis of Visually Guided Head Movements Studied With fMRI

2003 ◽  
Vol 89 (5) ◽  
pp. 2516-2527 ◽  
Author(s):  
Laurent Petit ◽  
Michael S. Beauchamp

We used event-related fMRI to measure brain activity while subjects performed saccadic eye, head, and gaze movements to visually presented targets. Two distinct patterns of response were observed. One set of areas was equally active during eye, head, and gaze movements and consisted of the superior and inferior subdivisions of the frontal eye fields, the supplementary eye field, the intraparietal sulcus, the precuneus, area MT in the lateral occipital sulcus and subcortically in basal ganglia, thalamus, and the superior colliculus. These areas have been previously observed in functional imaging studies of human eye movements, suggesting that a common set of brain areas subserves both oculomotor and head movement control in humans, consistent with data from single-unit recording and microstimulation studies in nonhuman primates that have described overlapping eye- and head-movement representations in oculomotor control areas. A second set of areas was active during head and gaze movements but not during eye movements. This set of areas included the posterior part of the planum temporale and the cortex at the temporoparietal junction, known as the parieto-insular vestibular cortex (PIVC). Activity in PIVC has been observed during imaging studies of invasive vestibular stimulation, and we confirm its role in processing the vestibular cues accompanying natural head movements. Our findings demonstrate that fMRI can be used to study the neural basis of head movements and show that areas that control eye movements also control head movements. In addition, we provide the first evidence for brain activity associated with vestibular input produced by natural head movements as opposed to invasive caloric or galvanic vestibular stimulation.

2015 ◽  
Vol 29 (4) ◽  
pp. 135-146 ◽  
Author(s):  
Miroslaw Wyczesany ◽  
Szczepan J. Grzybowski ◽  
Jan Kaiser

Abstract. In the study, the neural basis of emotional reactivity was investigated. Reactivity was operationalized as the impact of emotional pictures on the self-reported ongoing affective state. It was used to divide the subjects into high- and low-responders groups. Independent sources of brain activity were identified, localized with the DIPFIT method, and clustered across subjects to analyse the visual evoked potentials to affective pictures. Four of the identified clusters revealed effects of reactivity. The earliest two started about 120 ms from the stimulus onset and were located in the occipital lobe and the right temporoparietal junction. Another two with a latency of 200 ms were found in the orbitofrontal and the right dorsolateral cortices. Additionally, differences in pre-stimulus alpha level over the visual cortex were observed between the groups. The attentional modulation of perceptual processes is proposed as an early source of emotional reactivity, which forms an automatic mechanism of affective control. The role of top-down processes in affective appraisal and, finally, the experience of ongoing emotional states is also discussed.


2006 ◽  
Vol 16 (1-2) ◽  
pp. 1-22 ◽  
Author(s):  
Junko Fukushima ◽  
Teppei Akao ◽  
Sergei Kurkin ◽  
Chris R.S. Kaneko ◽  
Kikuro Fukushima

In order to see clearly when a target is moving slowly, primates with high acuity foveae use smooth-pursuit and vergence eye movements. The former rotates both eyes in the same direction to track target motion in frontal planes, while the latter rotates left and right eyes in opposite directions to track target motion in depth. Together, these two systems pursue targets precisely and maintain their images on the foveae of both eyes. During head movements, both systems must interact with the vestibular system to minimize slip of the retinal images. The primate frontal cortex contains two pursuit-related areas; the caudal part of the frontal eye fields (FEF) and supplementary eye fields (SEF). Evoked potential studies have demonstrated vestibular projections to both areas and pursuit neurons in both areas respond to vestibular stimulation. The majority of FEF pursuit neurons code parameters of pursuit such as pursuit and vergence eye velocity, gaze velocity, and retinal image motion for target velocity in frontal and depth planes. Moreover, vestibular inputs contribute to the predictive pursuit responses of FEF neurons. In contrast, the majority of SEF pursuit neurons do not code pursuit metrics and many SEF neurons are reported to be active in more complex tasks. These results suggest that FEF- and SEF-pursuit neurons are involved in different aspects of vestibular-pursuit interactions and that eye velocity coding of SEF pursuit neurons is specialized for the task condition.


2012 ◽  
Vol 25 (0) ◽  
pp. 32
Author(s):  
Sophie Raeder ◽  
Heinrich H. Bülthoff ◽  
Michael Barnett-Cowan

The perception of simultaneity between auditory and vestibular information is crucially important for maintaining a coherent representation of the acoustic environment whenever the head moves. Yet, despite similar transduction latencies, vestibular stimuli are perceived significantly later than auditory stimuli when simultaneously generated (Barnett-Cowan and Harris, 2009, 2011). However, these studies paired a vestibular stimulation of long duration (∼1 s) and of a continuously changing temporal envelope with brief (10–50 ms) sound pulses. In the present study the stimuli were matched for temporal envelope. Participants judged the temporal order of the onset of an active head movement and of brief (50 ms) or long (1400 ms) sounds with a square or raised-cosine shaped envelope. Consistent with previous reports, head movement onset had to precede the onset of a brief sound by about 73 ms in order to be perceived as simultaneous. Head movements paired with long square sounds (∼100 ms) were not significantly different than brief sounds. Surprisingly, head movements paired with long raised-cosine sound (∼115 ms) had to be presented even earlier than brief stimuli. This additional lead time could not be accounted for by differences in the comparison stimulus characteristics (duration and temporal envelope). Rather, differences among sound conditions were found to be attributable to variability in the time for head movement to reach peak velocity: the head moved faster when paired with a brief sound. The persistent lead time required for vestibular stimulation provides further evidence that the perceptual latency of vestibular stimulation is larger compared to auditory stimuli.


1988 ◽  
Vol 59 (3) ◽  
pp. 922-936 ◽  
Author(s):  
R. W. Sikes ◽  
B. A. Vogt ◽  
H. A. Swadlow

1. Responses of single units in area 29 of cingulate cortex were examined in alert rabbits during vestibular and optokinetic nystagmus. Eye movements were measured by optically detecting the position of an infrared light-emitting diode attached to the cornea. 2. Fourteen percent of cingulate cells (68 of 477 isolated units) had responses that were correlated to the occurrence of quick phases. Latencies ranged from 60 ms before to 220 ms after the onset of the quick phase with a mean of 70 ms and standard deviation of 58 ms. Most units responded during or following quick phases, although four units had responses that preceded the quick-phase onset. 3. Unitary responses during quick phases were not due to visual field movement, since these responses occurred in the dark as well as the light. The responses were not dependent upon vestibular stimulation, since responses related to spontaneous saccadelike eye movements were observed in cingulate quick-phase neurons. 4. The majority (37 of 52) of the quick-phase neurons had a directional preference. Approximately equal numbers of directional units responded to quick phases directed ipsilaterally and contralaterally with respect to the recording site. 5. About one-fourth of the quick-phase units were bidirectional (15 of 52) with virtually equal responses to ipsilaterally and contralaterally directed quick phases. 6. Auditory and/or somatosensory responses were observed in only five of the quick-phase cells. All such multimodal units were bidirectional. 7. The quick-phase units were histologically confirmed to be primarily in area 29d of cingulate cortex. Although most cells were located in layer V, some were isolated in layer II-III. 8. Cingulate cortex has reciprocal connections with visual cortex and oculomotor-related thalamic nuclei and projects to the layers of the superior colliculus that are involved in oculomotor control. Responses to quick phases in cingulate neurons may synchronize cingulate cortex responsiveness with the arrival of new, and potentially significant, visual information.


2021 ◽  
Author(s):  
Keiichi Onoda

Finding the neural basis of consciousness is a challenging issue, and it is still inconclusive where the core of consciousness is distributed in the brain. The global neuronal workspace theory (GNWT) emphasizes the role of the frontoparietal regions, whereas the integrated information theory (IIT) argues that the posterior part of the brain is the core of consciousness. IIT has proposed “main complex” as the core of consciousness in a dynamic system, which is a set of elements that the information loss in a hierarchical partition approach is the largest among that of all its supersets and subsets. However, no experimental study has reported the core of consciousness using the main complex for actual brain activity. This study estimated the main complex of brain dynamics using a functional MRI. The whole-brain fMRI data of eight conditions (seven tasks and a rest state) were divided into multiple elements based on network atlases, and the main complex of the dynamic system was estimated for each condition. It is assumed that, if there is a set of elements in the complex that are common to all conditions, the set is likely to contain the core of consciousness. Executive control, salience, and dorsal/ventral attention networks were commonly included in the main complex across all conditions, implying that these networks are responsible for the core of consciousness. This finding is consistent with the GNWT, as these networks are across the prefrontal and parietal regions.


1984 ◽  
Vol 52 (6) ◽  
pp. 1030-1050 ◽  
Author(s):  
D. Guitton ◽  
R. M. Douglas ◽  
M. Volle

Gaze is the position of the visual axis in space and is the sum of the eye movement relative to the head plus head movement relative to space. In monkeys, a gaze shift is programmed with a single saccade that will, by itself, take the eye to a target, irrespective of whether the head moves. If the head turns simultaneously, the saccade is correctly reduced in size (to prevent gaze overshoot) by the vestibuloocular reflex (VOR). Cats have an oculomotor range (OMR) of only about +/- 25 degrees, but their field of view extends to about +/- 70 degrees. The use of the monkey's motor strategy to acquire targets lying beyond +/- 25 degrees requires the programming of saccades that cannot be physically made. We have studied, in cats, rapid horizontal gaze shifts to visual targets within and beyond the OMR. Heads were either totally unrestrained or attached to an apparatus that permitted short unexpected perturbations of the head trajectory. Qualitatively, similar rapid gaze shifts of all sizes up to at least 70 degrees could be accomplished with the classic single-eye saccade and a saccade-like head movement. For gaze shifts greater than 30 degrees, this classic pattern frequently was not observed, and gaze shifts were accomplished with a series of rapid eye movements whose time separation decreased, frequently until they blended into each other, as head velocity increased. Between discrete rapid eye movements, gaze continued in constant velocity ramps, controlled by signals added to the VOR-induced compensatory phase that followed a saccade. When the head was braked just prior to its onset in a 10 degrees gaze shift, the eye attained the target. This motor strategy is the same as that reported for monkeys. However, for larger target eccentricities (e.g., 50 degrees), the gaze shift was interrupted by the brake and the average saccade amplitude was 12-15 degrees, well short of the target and the OMR. Gaze shifts were completed by vestibularly driven eye movements when the head was released. Braking the head during either quick phases driven by passive head displacements or visually triggered saccades resulted in an acceleration of the eye, thereby implying interaction between the VOR and these rapid-eye-movement signals. Head movements possessed a characteristic but task-dependent relationship between maximum velocity and amplitude. Head movements terminated with the head on target. The eye saccade usually lagged the head displacement.(ABSTRACT TRUNCATED AT 400 WORDS)


Author(s):  
Eckart Zimmermann

On average, we redirect our gaze with a frequency at about 3 Hz. In real life, gaze shifts consist of eye and head movements. Much research has focused on how the accuracy of eye movements is monitored and calibrated. By contrast, little is known about how head movements remain accurate. I wondered whether serial dependencies between artificially induced errors in head movement targeting and the immediately following head movement might recalibrate movement accuracy. I also asked whether head movement targeting errors would influence visual localization. To this end, participants wore a head mounted display and performed head movements to targets, which were displaced as soon as the start of the head movement was detected. I found that target displacements influenced head movement amplitudes in the same trial, indicating that participants could adjust their movement online to reach the new target location. However, I also found serial dependencies between the target displacement in trial n-1 and head movements amplitudes in the following trial n. I did not find serial dependencies between target displacements and visuomotor localization. The results reveal that serial dependencies recalibrate head movement accuracy.


1999 ◽  
Vol 9 (2) ◽  
pp. 83-87 ◽  
Author(s):  
Walter H. Johnson ◽  
Fred A. Sunahara ◽  
Jack P. Landolt

The objective of this study was to determine the importance, if any, of the non-auditory labyrinth of the inner ear in visually induced nausea and self-vection in subjects exposed to a moving visual field with and without concomitant pitching head movements. Subjects teated were 15 normals, 18 unilateral labyrinthectomies and 6 bilateral labyrinthectomies. The findings show a higher incidence of pseudo-Coriolis induced nausea in normal subjects compared to unilateral and bilateral labyrinthectomized subjects. When the subjects were exposed to the moving visual field only (no head movement), pronounced self-vection occurred in all subjects, but with earlier onset in the bilateral labyrinthine defective subjects as compared to normal and unilateral defective subjects. The subjective intensities of self-vections reported by labyrinth-defectives were much more pronounced as compared to normal subjects, and it is apparent that visual input in these subjects achieves much more importance in maintaining compensatory eye movements, and the gain of neck reflexes is enhanced. The findings that visual stimulation is more effective in producing the disabling effects after labyrinthine destruction could possibly be explained by enhancement of vision after loss of labyrinthine sensory input, and the gain in neck reflexes is also enhanced after labyrinthectomy.


1994 ◽  
Vol 72 (6) ◽  
pp. 2648-2664 ◽  
Author(s):  
R. J. Cowie ◽  
D. L. Robinson

1. These studies were initiated to understand the neural sites and mechanisms controlling head movements during gaze shifts. Gaze shifts are made by saccadic eye movements with and without head movements. Sites were stimulated electrically within the brain stem of awake, trained monkeys relatively free to make head movements to study the head-movement components of gaze shifts. 2. Electrical stimulation in and around the gigantocellular reticular nucleus evoked head movements in the ipsilateral direction. Gaze shifts were never evoked from these sites, presumably because the vestibulo-ocular reflex compensated. The rough topography of this region included large head movements laterally, small movements medially, downward movements from dorsal sites, and upward movements more ventrally. 3. The initial position of the head influenced the magnitude of the elicited movement with larger movements produced when the head was directed to the contralateral side. Attentive fixation was associated with larger and faster head movements when compared with those evoked during spontaneous behavior. 4. The superior colliculus makes a significant contribution to gaze shifts and has been shown to contribute to head movements. Because the colliculus is a major source of afferents to the gigantocellular reticular nucleus, comparable stimulation studies of the superior colliculus were conducted. When the colliculus was excited, shifts of gaze in the contralateral direction were predominant. These were most often accomplished by saccadic eye movements, however, we frequently elicited head movements that had an average latency 10 ms longer than those elicited from the reticular head movement region. Sites evoking head movements tended to be deeper and more caudal than loci eliciting eye movements. Neither the onset latencies, amplitudes, nor peak velocities of head movements and eye movements were correlated. Gaze shifts evoked from the caudal colliculus with the head free were larger than those elicited from the same site with the head fixed. 5. These studies demonstrate that both the superior colliculus and gigantocellular reticular nucleus mediate head movements. The colliculus plays a role in orienting to external events, and so collicular head movements predominantly were associated with gaze shifts, with the eye and head movements uncoupled. The medullary reticular system may play a role in the integration of a wider range of movements. Head movements from the medullary reticular sites probably participate in several forms of head movements, such as those that are related to postural reflexes, started volitionally, and/or oriented to external events.


Neurology ◽  
2017 ◽  
Vol 88 (17) ◽  
pp. 1666-1673 ◽  
Author(s):  
Toni S. Pearson ◽  
Roser Pons ◽  
Kristin Engelstad ◽  
Steven A. Kane ◽  
Michael E. Goldberg ◽  
...  

Objective:To describe a characteristic paroxysmal eye–head movement disorder that occurs in infants with Glut1 deficiency syndrome (Glut1 DS).Methods:We retrospectively reviewed the medical charts of 101 patients with Glut1 DS to obtain clinical data about episodic abnormal eye movements and analyzed video recordings of 18 eye movement episodes from 10 patients.Results:A documented history of paroxysmal abnormal eye movements was found in 32/101 patients (32%), and a detailed description was available in 18 patients, presented here. Episodes started before age 6 months in 15/18 patients (83%), and preceded the onset of seizures in 10/16 patients (63%) who experienced both types of episodes. Eye movement episodes resolved, with or without treatment, by 6 years of age in 7/8 patients with documented long-term course. Episodes were brief (usually <5 minutes). Video analysis revealed that the eye movements were rapid, multidirectional, and often accompanied by a head movement in the same direction. Eye movements were separated by clear intervals of fixation, usually ranging from 200 to 800 ms. The movements were consistent with eye–head gaze saccades. These movements can be distinguished from opsoclonus by the presence of a clear intermovement fixation interval and the association of a same-direction head movement.Conclusions:Paroxysmal eye–head movements, for which we suggest the term aberrant gaze saccades, are an early symptom of Glut1 DS in infancy. Recognition of the episodes will facilitate prompt diagnosis of this treatable neurodevelopmental disorder.


Sign in / Sign up

Export Citation Format

Share Document