Relationships Between Skin Temperature and Temporal Summation of Heat and Cold Pain

2003 ◽  
Vol 90 (1) ◽  
pp. 100-109 ◽  
Author(s):  
Andre P. Mauderli ◽  
Charles J. Vierck ◽  
Richard L. Cannon ◽  
Anthony Rodrigues ◽  
Chiayi Shen

Temporal summation of heat pain during repetitive stimulation is dependent on C nociceptor activation of central N-methyl-d-aspartate (NMDA) receptor mechanisms. Moderate temporal summation is produced by sequential triangular ramps of stimulation that control skin temperature between heat pulses but do not elicit distinct first and second pain sensations. Dramatic summation of second pain is produced by repeated contact of the skin with a preheated thermode, but skin temperature between taps is not controlled by this procedure. Therefore relationships between recordings of skin temperature and psychophysical ratings of heat pain were evaluated during series of repeated skin contacts. Surface and subcutaneous recordings of skin temperatures revealed efficient thermoregulatory compensation for heat stimulation at interstimulus intervals (ISIs) ranging from 2 to 8 s. Temporal summation of heat pain was strongly influenced by the ISIs and cannot be explained by small increases in skin temperature between taps or by heat storage throughout a stimulus series. Repetitive brief contact with a precooled thermode was utilized to evaluate whether temporal summation of cold pain occurs, and if so, whether it is influenced by skin temperature. Surface and subcutaneous recordings of skin temperature revealed a sluggish thermoregulatory compensation for repetitive cold stimulation. In contrast to heat stimulation, skin temperature did not recover between cold stimuli throughout ISIs of 3–8 s. Psychophysically, repetitive cold stimulation produced an aching pain sensation that progressed gradually and radiated beyond the site of stimulation. The magnitude of aching pain was well related to skin temperature and thus appeared to be established primarily by peripheral factors.

2022 ◽  
Vol 41 (1) ◽  
Author(s):  
Tomonori Sawada ◽  
Hiroki Okawara ◽  
Daisuke Nakashima ◽  
Shuhei Iwabuchi ◽  
Morio Matsumoto ◽  
...  

Abstract Background Technological innovations have allowed the use of miniature apparatus that can easily control and program heat and cold stimulations using Peltier elements. The wearable thermo-device has a potential to be applied to conventional contrast bath therapy. This study aimed to examine the effects of alternating heat and cold stimulation (HC) using a wearable thermo-device on subjective and objective improvement of shoulder stiffness. Methods Twenty healthy young male individuals (20.3 ± 0.6 years) participated in this study. The interventions were randomly conducted under four conditions, including HC, heat stimulation, cold stimulation, and no stimulation on their bilateral trapezius muscle, after a 30-min typing task. Each intervention was administered at least 1 week apart. The analyzed limb was the dominant arm. Muscle hardness was assessed using a portable muscle hardness meter, as well as the skin temperature over the stimulated area. After each condition, the participants were asked for feedback regarding subjective improvement in refreshed feelings, muscle stiffness, and muscle fatigue using an 11-point numerical rating scale. Results With regard to muscle hardness, only the HC condition significantly decreased from 1.43 N to 1.37 N (d = 0.44, p < 0.05). Additionally, reduced muscle hardness in HC condition was associated with the degree of skin cooling during the intervention (cold max: r = 0.634, p < 0.01; cold change: r = −0.548, p < 0.05). Subjective improvement in refreshed feelings, muscle stiffness, and muscle fatigue was determined in the HC and heat stimulation conditions compared with the no stimulation condition (p < 0.01 and p < 0.05, respectively). Moreover, the HC condition showed significantly greater improvements in muscle stiffness and fatigue compared to the cold stimulation condition (p < 0.05). Conclusions The current study demonstrated that HC promoted not only better subjective symptoms, such as muscle stiffness and fatigue, but also lesser muscle hardness. Furthermore, an association was observed between the degree of skin temperature cooling and reduced muscle hardness during HC. Further investigations on the ratio and intensity of cooling should be conducted in the future to establish the optimal HC protocol for muscle stiffness or fatigue. Trial registration UMIN000040620. Registered 1 June 2020


2008 ◽  
Vol 21 (2) ◽  
pp. 126
Author(s):  
Joon Ho Lee ◽  
Jae Hwa Yoo ◽  
Sung Hwan Cho ◽  
Yong Ik Kim

1977 ◽  
Vol 42 (6) ◽  
pp. 909-914 ◽  
Author(s):  
M. B. Maron ◽  
J. A. Wagner ◽  
S. M. Horvath

To assess thermoregulatory responses occuring under actual marathon racing conditions, rectal (Tre) and five skin temperatures were measured in two runners approximately every 9 min of a competitive marathon run under cool conditions. Race times and total water losses were: runner 1 = 162.7 min, 3.02 kg; runner 2 = 164.6 min, 2.43 kg. Mean skin temperature was similar throughout the race in the two runners, although they exhibited a marked disparity in temperature at individual skin sites. Tre plateaued after 35--45 min (runner 1 = 40.0--40.1, runner 2 = 38.9--39.2 degrees C). While runner 2 maintained a relatively constant level for the remainder of the race, runner 1 exhibited a secondary increase in Tre. Between 113 and 119 min there was a precipitous rise in Tre from 40.9 to 41.9 degrees C. Partitional calorimetric calculations suggested that a decrease in sweating was responsible for this increment. However, runner 1's ability to maintain his high Tre and running pace for the remaining 44 min of the race and exhibit no signs of heat illness indicated thermoregulation was intact.


Author(s):  
Pooja Devi ◽  
Mahendra Singh ◽  
Yallappa M. Somagond ◽  
A.K. Roy

Background: Heat stress causes oxidative stress and declines milk production potential of cows. The physiological responses and skin temperature of heat stressed animals are good indices for deterring the heat stress. The efficacy of medicinal herb Chlorophytum borivilianum (CB) was tested in lowering the rise in values of physiological responses and skin temperature in crossbred vis a vis Indigenous cows. Methods: Eighteen Tharparkar (TP) and Crossbred KF cows in mid-lactation were given; No supplement (control), a low (T1, n=6) and a high dose (T2, n=6) of CB @ 40 and 80 mg/kg BW/day, respectively for 90 days during hot-humid season. Respiration rate (RR), pulse rate (PR), rectal temperature (RT) and skin temperature (ST) was recorded at the site of forehead, neck, rear body, and udder surface in the morning and afternoon at weekly intervals. Temperature-humidity index (THI) was calculated to assess the degree of thermal stress in animals. Result: Physiological responses and skin temperatures were higher (p less than 0.01) in the afternoon than morning intervals in TP and KF cows. CB feeding significantly lowered physiological responses and ST (p less than 0.01) in high dose as compared to low dose. It was concluded that CB feeding @ 80 mg/kg BW/day effectively alleviates the heat stress. Indigenous cows were found more heat tolerant in comparison to crossbred cows.


Author(s):  
Nima Ahmadi ◽  
Farzan Sasangohar ◽  
Tariq Nisar ◽  
Valerie Danesh ◽  
Ethan Larsen ◽  
...  

Objective To identify physiological correlates to stress in intensive care unit nurses. Background Most research on stress correlates are done in laboratory environments; naturalistic investigation of stress remains a general gap. Method Electrodermal activity, heart rate, and skin temperatures were recorded continuously for 12-hr nursing shifts (23 participants) using a wrist-worn wearable technology (Empatica E4). Results Positive correlations included stress and heart rate (ρ = .35, p < .001), stress and skin temperature (ρ = .49, p < .05), and heart rate and skin temperatures (ρ = .54, p = .0008). Discussion The presence and direction of some correlations found in this study differ from those anticipated from prior literature, illustrating the importance of complementing laboratory research with naturalistic studies. Further work is warranted to recognize nursing activities associated with a high level of stress and the underlying reasons associated with changes in physiological responses. Application Heart rate and skin temperature may be used for real-time detection of stress, but more work is needed to validate such surrogate measures.


1984 ◽  
Vol 57 (6) ◽  
pp. 1738-1741 ◽  
Author(s):  
T. G. Waldrop ◽  
D. E. Millhorn ◽  
F. L. Eldridge ◽  
L. E. Klingler

Respiratory responses to increased skin temperatures were recorded in anesthetized cerebrate and in unanesthetized decerebrate cats. All were vagotomized, glomectomized, and paralyzed. Core body temperature and end-tidal Pco2 were kept constant with servoncontrollers. Stimulation of cutaneous nociceptors by heating the skin to 46 degrees C caused respiration to increase in both cerebrate and decerebrate cats. An even larger facilitation of respiration occurred when the skin temperature was elevated to 51 degrees C. However, respiration did not increase in either group of cats when the skin was heated to 41 degrees C to activate cutaneous warm receptors. The phenomenon of sensitization of nociceptors was observed. Spinal transection prevented all the respiratory responses to cutaneous heating. We conclude that noxious, but not nonnoxious, increases in skin temperature cause increases in respiratory output.


2021 ◽  
Vol 126 (3) ◽  
pp. 946-956
Author(s):  
Roland Staud ◽  
Jeff Boissoneault ◽  
Song Lai ◽  
Marlin S. Mejia ◽  
Riddhi Ramanlal ◽  
...  

“Windup” and its behavioral correlate “temporal-summation-of-second pain” (TSSP) represent spinal cord mechanisms of pain augmentation associated with central sensitization and chronic pain. Fibromyalgia (FM) is a chronic pain disorder, where abnormal TSSP has been demonstrated. We used fMRI to study spinal cord and brainstem activation during TSSP. We characterized the time course of spinal cord and brainstem BOLD activity during TSSP which showed abnormal brainstem activity in patients with FM, possibly due to deficient pain modulation.


1978 ◽  
Vol 44 (1) ◽  
pp. 1-4 ◽  
Author(s):  
Y. Shoenfeld ◽  
R. Udassin ◽  
Y. Shapiro ◽  
A. Ohri ◽  
E. Sohar

Sixty volunteers, 33 males and 27 females (18–63 yr), were divided according to age and sex. They were exposed for 10 min to extreme dry heat: 80–90 degrees C dry bulb temperature and 3–4% relative humidity. Their rectal temperature, skin temperature at eight different points, weight, and heart rate were recorded prior to and immediately following the exposure. A mean rise of only 0.5 degrees C in rectal temperature was recorded following exposure as compared to a mean rise of 5.2 degrees C in mean weighted skin temperature (MWST). Female subjects showed a significantly higher rise in MWST than the male subjects. Similarly, a significantly higher rise in MWST was observed in elderly male subjects as compared to the youngest male group (P less than 0.05). The differences in MWST possibly resulted from differences in mean skin blood flow causing differences in skin conductance. Large individual variation in heat response was recorded in rectal temperature, as well as in weighted skin temperatures. The increase in skin temperature during the first 10 min of exposure to extreme dry heat may serve as an indicator for heat tolerance time, and may help predicting heatstroke susceptible individuals.


1965 ◽  
Vol 20 (1) ◽  
pp. 31-36 ◽  
Author(s):  
C. H. Wyndham

The response characteristics have been studied of the curves relating heat conductance and sweat rate to change in rectal temperature at different levels of skin temperature, and vice versa. The increase in these responses with deviation in rectal temperature from the “neutral” setting is highly nonlinear; the neutral point and the curve shift to the right and the slope decreases with lowering of skin temperature and vice versa when it is raised. With further deviation of rectal temperature these responses reach maximum values, i.e., become “saturated.” All of these features are analogous to servomechanisms with negative feedback, giving sensitive and stable control. Control of these responses by skin temperature is more linear, characterizing passive control systems which are insensitive and less stable. Quantitatively, the effect at skin temperature of 26 C of 1 C rise in rectal temperature on heat conductance and sweat rate is 10 times greater than the same rise in skin temperature; at a neutral skin temperature of 33–34 C, a rise of 1 C in rectal temperature is 6–7 times greater; at a high skin temperature of 36 C, a rise in rectal temperature of 1 C is 4–5 times greater. relationship between heat conductance and a change in either rectal or skin temperatures; relationship between sweat rate and a change in either rectal or skin temperatures; response characteristics of curves relating heat conductance to change in either rectal or skin temperatures; response characteristics of curves relating sweat rate to change in either rectal or skin temperatures; assessment of the contribution of skin and rectal temperatures to man's temperature regulation Submitted on October 22, 1963


2011 ◽  
Vol 12 (2) ◽  
pp. 297-303 ◽  
Author(s):  
QiQi Zhou ◽  
Donald D. Price ◽  
Christopher S. Callam ◽  
Michael A. Woodruff ◽  
G. Nicholas Verne

Sign in / Sign up

Export Citation Format

Share Document