Comparative Efficacy of Physiological Responses and Skin Temperatures in Indigenous and Crossbred Cattle Supplemented with Chlorophytum borivilianum in Summer Season

Author(s):  
Pooja Devi ◽  
Mahendra Singh ◽  
Yallappa M. Somagond ◽  
A.K. Roy

Background: Heat stress causes oxidative stress and declines milk production potential of cows. The physiological responses and skin temperature of heat stressed animals are good indices for deterring the heat stress. The efficacy of medicinal herb Chlorophytum borivilianum (CB) was tested in lowering the rise in values of physiological responses and skin temperature in crossbred vis a vis Indigenous cows. Methods: Eighteen Tharparkar (TP) and Crossbred KF cows in mid-lactation were given; No supplement (control), a low (T1, n=6) and a high dose (T2, n=6) of CB @ 40 and 80 mg/kg BW/day, respectively for 90 days during hot-humid season. Respiration rate (RR), pulse rate (PR), rectal temperature (RT) and skin temperature (ST) was recorded at the site of forehead, neck, rear body, and udder surface in the morning and afternoon at weekly intervals. Temperature-humidity index (THI) was calculated to assess the degree of thermal stress in animals. Result: Physiological responses and skin temperatures were higher (p less than 0.01) in the afternoon than morning intervals in TP and KF cows. CB feeding significantly lowered physiological responses and ST (p less than 0.01) in high dose as compared to low dose. It was concluded that CB feeding @ 80 mg/kg BW/day effectively alleviates the heat stress. Indigenous cows were found more heat tolerant in comparison to crossbred cows.

2019 ◽  
Vol 6 (1) ◽  
pp. 70
Author(s):  
Elmy Mariana ◽  
Cece Sumantri ◽  
Dewi Apri Astuti ◽  
Anneke Anggraeni ◽  
Asep Gunawan

ABSTRAKTujuan penelitian ini adalah untuk mengetahui pengaruh ketinggian tempat terhadap kondisi mikroklimat,termoregulasi dan produktivitas sapi Friesian-Holstein (FH). Penelitian dilakukan pada tiga lokasi dengan ketinggian berbeda, yaituPodok Ranggon (97mdpl), Ciawi (576mdpl), dan Lembang (1241mdpl). Sebanyak 63 sapi FH dalam kondisi laktasi normal digunakan dalam penelitian ini.  Aspek lingkungan meliputi suhu udara, kelembaban relatif dan Temperature-Humidity Index di dicatat setiap 2 jam dari pukul 08.00 sampai 16.00 WIB. Parameter termoregulasi yang diamati terdiri atas suhu kulit (Ts),suhu rektal (Tr), suhu tubuh (Tb), denyut jantung (Hr),laju pernapasan (Rr), dan Heat Tolerance Coeficient (HTC).Berdasarkan nilai Ta, Rr dan THI, dataran rendah memberikan dampak cekaman panas sedang, dataran sedangdan tinggi memberikan dampak cekaman panas ringan pada sapi perah. Hasil menunjukkan bahwa sapi dataran rendah memiliki Nilai HTC, Tr, Ts dan Tb tertinggi (P<0,05) dan Hr yang terendah (P<0,05). Produksi susu di ketiga lokasi penelitian berbeda nyata (P<0,05), dengan produksi susu tertinggi di dataran tinggi (13,1±3,52 kg),dataran sedang (11,3±4,73 kg) dan dataran rendah (7,0±3,36 kg). Secara umum sapi FH di dataran rendah, sedang dan tinggi tercekam panas akibat kondisi lingkungan yang berada pada kondisi di luar zona nyamanselama musim kemarau, akan tetapi mampu beradaptasi terhadap kondisi tersebut. Kata kunci: ketinggian tempat, produktivitas, sapi perah, cekaman panas, termoregulasiABSTRACTThe purpose of this research was to determine altitude effect on microclimate, thermoregulation and productivity of Friesian Holstein. Research was conducted in different altitudes, i.e.: Pondok Ranggon (97m asl), Ciawi (576m asl), and Lembang (1241 m asl). A total of 63 FH cows in normal lactation were used in this study. Microclimate aspects observation includes environmental temperature (Ta), relative humidity (RH) and Temperature-Humidity Index (THI) were recorded every 2 hours from 08.00 to 16.00. The physiological responses measurements consisted of skin temperature (Ts), rectal temperature (Tr), body temperature (Tb), heart rate (Hr), respiratory rate (Rr) and Heat Tolerance Coeficient (HTC). Lowland environmental provide moderate heat stress, while the medium and highland impacts with mild stress. The results showed that lowland cows have highest HTC, Tr, Ts and Tb (P<0.05) and lowest Hr (P<0.05). Milk production in the different altitude was significantly different (P<0.05), with the highest milk yields in the highlands (13.1±3.52 kg), medium (11.3±4.73 kg) and lowland (7.0±3.36 kg). In general, HF dairy cows in low-, medium- and highland are exposed to climatic stress during dry season conditions, although they have the ability to adapt physiologically and cope with environmental stress.  Keyworlds: altitude, dairy cattle, heat stress, productivity, physiological responses


1965 ◽  
Vol 20 (2) ◽  
pp. 278-282 ◽  
Author(s):  
Leo C. Senay ◽  
Margaret L. Christensen

Resting subjects were exposed for 12 hr to 43 C dry bulb, 28 C wet bulb, with and without rehydration. During dehydration, average weighted cutaneous opacity pulse amplitudes decreased 19.5%. An apparent relationship between calculated stroke volume and cutaneous pulse amplitudes existed. A 26% increase in heart rate offset decreases in perfusion per beat and probably contributed to a rise in diastolic pressure. Increases in skin temperature paralleled those of oral temperatures. In most subjects evaporative rates were slightly lower during dehydration. Certain dehydrating subjects maintained sweat rates at control levels but this did not prevent an increase in both oral and skin temperatures. Failure of temperature regulation in these experiments does not appear to be due to a decrease in heat transport or evaporation but rather to a lack of responsiveness of the sudomotor and vasomotor systems to increases in body temperature. Reasons for the temperature rise appear complex. evaporative weight loss; heat transport; skin temperature; temperature regulation Submitted on July 22, 1964


2014 ◽  
Vol 307 (7) ◽  
pp. R822-R827 ◽  
Author(s):  
J. Pearson ◽  
R. A. I. Lucas ◽  
Z. J. Schlader ◽  
J. Zhao ◽  
D. Gagnon ◽  
...  

Passive heat stress increases core and skin temperatures and reduces tolerance to simulated hemorrhage (lower body negative pressure; LBNP). We tested whether exercise-induced heat stress reduces LBNP tolerance to a greater extent relative to passive heat stress, when skin and core temperatures are similar. Eight participants (6 males, 32 ± 7 yr, 176 ± 8 cm, 77.0 ± 9.8 kg) underwent LBNP to presyncope on three separate and randomized occasions: 1) passive heat stress, 2) exercise in a hot environment (40°C) where skin temperature was moderate (36°C, active 36), and 3) exercise in a hot environment (40°C) where skin temperature was matched relative to that achieved during passive heat stress (∼38°C, active 38). LBNP tolerance was quantified using the cumulative stress index (CSI). Before LBNP, increases in core temperature from baseline were not different between trials (1.18 ± 0.20°C; P > 0.05). Also before LBNP, mean skin temperature was similar between passive heat stress (38.2 ± 0.5°C) and active 38 (38.2 ± 0.8°C; P = 0.90) trials, whereas it was reduced in the active 36 trial (36.6 ± 0.5°C; P ≤ 0.05 compared with passive heat stress and active 38). LBNP tolerance was not different between passive heat stress and active 38 trials (383 ± 223 and 322 ± 178 CSI, respectively; P = 0.12), but both were similarly reduced relative to active 36 (516 ± 147 CSI, both P ≤ 0.05). LBNP tolerance is not different between heat stresses induced either passively or by exercise in a hot environment when skin temperatures are similarly elevated. However, LBNP tolerance is influenced by the magnitude of the elevation in skin temperature following exercise induced heat stress.


2020 ◽  
Vol 94 ◽  
pp. 102759
Author(s):  
Yoshimitsu Ouchi ◽  
Hiroshi Tanizawa ◽  
Jun-ichi Shiraishi ◽  
John F. Cockrem ◽  
Vishwajit S. Chowdhury ◽  
...  

2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 7-7
Author(s):  
Betty R McConn ◽  
Alan W Duttlinger ◽  
Kouassi R Kpodo ◽  
Jacob M Maskal ◽  
Brianna N Gaskill ◽  
...  

Abstract Pregnant sows, especially during late-gestation, may be susceptible to heat stress due to increased metabolic heat production and body mass. Therefore, the study objective was to determine the thermoregulatory and physiological responses of sows exposed to increasing ambient temperature (TA) at 3 reproductive stages. In 3 repetitions, 27 multiparous sows (parity 3.22±0.89) were individually housed and had jugular catheters placed 5.0±1.0 d prior to the experiment. To differentiate between reproductive stages, sows were categorized as open (not pregnant, n=9), mid-gestation (59.7±9.6 days pregnant, n=9), or late-gestation (99.0±4.8 days pregnant, n=9). During the experiment, sows were exposed to 6 consecutive 1 h periods of increasing TA (period 1, 14.39±2.14°C; period 2, 16.20±1.39°C; period 3, 22.09±1.87°C; period 4, 26.34±1.39°C; period 5, 30.56±0.81°C; period 6, 35.07±0.96°C), with 1 h transition phases in between each period. Respiration rate (RR), heart rate (HR), skin temperature, and vaginal temperature (TV) were measured every 20 min and the mean was calculated for each period. At the end of each period, blood gases, leukocytes, and red blood cell counts were measured. Overall, RR and HR were greater (P≤0.04; 45.6% and 12.9%, respectively) in late-gestation versus mid-gestation sows. Compared to mid-gestation and open sows, TV tended to be greater (P=0.06) during period 4 (0.18°C and 0.29°C, respectively) and period 5 (0.14°C and 0.18°C, respectively) in late-gestation sows. Blood O2 increased (P&lt; 0.01; 18.1%) for all sows with advancing period, regardless of reproductive stage. Late-gestation sows had reduced (P=0.02; 16.1%) blood CO2 compared to mid-gestation sows, regardless of period. In summary, late-gestation sows appear to be more sensitive to increasing TA as indicated by increased RR, HR, TV, and blood O2, and reduced blood CO2 when compared to mid-gestation or open sows. This change in O2 and CO2, due to increasing RR and heat stress sensitivity of late-gestation sows, may suggest an alteration to the acid-base balance, leading to respiratory alkalosis.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 722
Author(s):  
Jang-Hoon Jo ◽  
Jalil Ghassemi Nejad ◽  
Dong-Qiao Peng ◽  
Hye-Ran Kim ◽  
Sang-Ho Kim ◽  
...  

This study aims to characterize the influence of short-term heat stress (HS; 4 day) in early lactating Holstein dairy cows, in terms of triggering blood metabolomics and parameters, milk yield and composition, and milk microRNA expression. Eight cows (milk yield = 30 ± 1.5 kg/day, parity = 1.09 ± 0.05) were homogeneously housed in environmentally controlled chambers, assigned into two groups with respect to the temperature humidity index (THI) at two distinct levels: approximately ~71 (low-temperature, low-humidity; LTLH) and ~86 (high-temperature, high-humidity; HTHH). Average feed intake (FI) dropped about 10 kg in the HTHH group, compared with the LTLH group (p = 0.001), whereas water intake was only numerically higher (p = 0.183) in the HTHH group than in the LTLH group. Physiological parameters, including rectal temperature (p = 0.001) and heart rate (p = 0.038), were significantly higher in the HTHH group than in the LTLH group. Plasma cortisol and haptoglobin were higher (p < 0.05) in the HTHH group, compared to the LTLH group. Milk yield, milk fat yield, 3.5% fat-corrected milk (FCM), and energy-corrected milk (ECM) were lower (p < 0.05) in the HTHH group than in the LTLH group. Higher relative expression of milk miRNA-216 was observed in the HTHH group (p < 0.05). Valine, isoleucine, methionine, phenylalanine, tyrosine, tryptophan, lactic acid, 3-phenylpropionic acid, 1,5-anhydro-D-sorbitol, myo-inositol, and urea were decreased (p < 0.05). These results suggest that early lactating cows are more vulnerable to short-term (4 day) high THI levels—that is, HTHH conditions—compared with LTLH, considering the enormous negative effects observed in measured blood metabolomics and parameters, milk yield and compositions, and milk miRNA-216 expression.


2021 ◽  
Vol 13 (5) ◽  
pp. 2836
Author(s):  
Khawar Shahzad ◽  
Muhammad Sultan ◽  
Muhammad Bilal ◽  
Hadeed Ashraf ◽  
Muhammad Farooq ◽  
...  

Poultry are one of the most vulnerable species of its kind once the temperature-humidity nexus is explored. This is so because the broilers lack sweat glands as compared to humans and undergo panting process to mitigate their latent heat (moisture produced in the body) in the air. As a result, moisture production inside poultry house needs to be maintained to avoid any serious health and welfare complications. Several strategies such as compressor-based air-conditioning systems have been implemented worldwide to attenuate the heat stress in poultry, but these are not economical. Therefore, this study focuses on the development of low-cost and environmentally friendly improved evaporative cooling systems (DEC, IEC, MEC) from the viewpoint of heat stress in poultry houses. Thermodynamic analysis of these systems was carried out for the climatic conditions of Multan, Pakistan. The results appreciably controlled the environmental conditions which showed that for the months of April, May, and June, the decrease in temperature by direct evaporative cooling (DEC), indirect evaporative cooling (IEC), and Maisotsenko-Cycle evaporative cooling (MEC) systems is 7–10 °C, 5–6.5 °C, and 9.5–12 °C, respectively. In case of July, August, and September, the decrease in temperature by DEC, IEC, and MEC systems is 5.5–7 °C, 3.5–4.5 °C, and 7–7.5 °C, respectively. In addition, drop in temperature-humidity index (THI) values by DEC, IEC, and MEC is 3.5–9 °C, 3–7 °C, and 5.5–10 °C, respectively for all months. Optimum temperature and relative humidity conditions are determined for poultry birds and thereby, systems’ performance is thermodynamically evaluated for poultry farms from the viewpoint of THI, temperature-humidity-velocity index (THVI), and thermal exposure time (ET). From the analysis, it is concluded that MEC system performed relatively better than others due to its ability of dew-point cooling and achieved THI threshold limit with reasonable temperature and humidity indexes.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 339
Author(s):  
Musa Bah ◽  
Muhammad Afzal Rashid ◽  
Khalid Javed ◽  
Talat Naseer Pasha ◽  
Muhammad Qamer Shahid

Water buffaloes wallow in water to combat heat stress during summer. With the decreasing reservoirs for wallowing, the farmers use sprinklers to cool the buffaloes in Pakistan. These sprinklers use a large quantity of groundwater, which is becoming scarce. The objective of the current study was to determine the effect of different sprinkler flow rates on the physiological, behavioral, and production responses of Nili Ravi buffaloes during summer. Eighteen buffaloes were randomly subjected to three sprinkler flow rate treatments in a double replicated 3 × 3 Latin square design. The flow rates were 0.8, 1.25, and 2.0 L/min. During the study, the average afternoon temperature humidity index was 84.6. The 1.25 and 2.0 L/min groups had significantly lower rectal temperature and respiratory rates than the 0.8 L/min group. Water intake was significantly higher in the 0.8 L/min group. Daily milk yield was higher in the 1.25 and 2.0 L/min groups than in the 0.8 L/min group. These results suggested that the sprinkler flow rates > 0.8 L/min effectively cooled the buffaloes. The sprinkler flow rate of 1.25 L/min appeared to be more efficient, as it used 37.5% less water compared to the 2.0 L/min.


Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1062
Author(s):  
Michael Abera ◽  
Yesihak Yusuf Mummed ◽  
Mitiku Eshetu ◽  
Fabio Pilla ◽  
Zewdu Wondifraw

Fogera cattle are among indigenous breeds of cattle in the northern part of Ethiopia. However, their response to heat stress (HS) under different seasonal variations has not been well investigated. This study was aimed to determine physiological, hematological, biochemical, and growth parameters of Fogera cattle calves to HS during dry season, short rainy, and long rainy. A total of 72 calves (24 for each season) that were 6 months of age with an equal number of males and females were evaluated for physiological, hematological, biochemical, and growth parameters. Daily ambient temperature (AT) and relative humidity (RH) were recorded two times per day during the study periods from which the daily average temperature–humidity index (THI) was calculated. The study revealed higher AT and THI during dry and short seasons while higher RH was observed during the long rainy season. Physiological parameters except rectal temperature were affected by the seasons. Hematological parameters were also affected by season except for packed cell volume. Biochemical and growth parameters were also significantly affected by the seasons. THI was positively related with physiological but negatively with growth parameters. Thus, the THI value of 66 can be considered as optimum for high weight gain and normal physiological response to HS in Fogera cattle calves under their current production system.


2004 ◽  
Vol 55 (3) ◽  
pp. 253 ◽  
Author(s):  
John B. Gaughan ◽  
M. Shane Davis ◽  
Terry L. Mader

A controlled crossover experimental design was used to determine the effect of altered water sprinkling duration on heifers subjected to heat stress conditions. Heifers were subjected to 3 days of thermoneutral conditions followed by 3 days of hot conditions accompanied by water sprinkling between 1300 and 1500 h (HOT1–3). Then on the following 2 days (HOT4–5), environmental conditions remained similar, but 3 heifers were sprinkled between 1200 and 1600 h (WET) and 3 were not sprinkled (NONWET). This was followed by a 1-day period (HOT6) in which environmental conditions and sprinkling regimen were similar to HOT1–3. Rectal temperature (RT) was collected hourly, and respiration rate (RR) was monitored every 2 h on HOT Days 2, 4, 5, and 6. Dry matter intake and rate of eating were also determined. Sprinkling reduced RR and RT (P < 0.01) of all heifers during HOT1–3. During HOT4–5, WET heifers had lower (P < 0.05) RT than NONWET from 1300 to 700 h and lower RR from 1400 to 2000 h. Dry matter intake of NONWET heifers was reduced by 30.6% (P < 0.05) during HOT4–5 and by 51.2% on HOT6. On HOT4–5 the dry matter intakes of WET heifers were similar to intakes under thermoneutral conditions. During HOT6, RT was again reduced following sprinkling in all heifers. Comparison of RT and RR of NONWET and WET heifers on HOT1–3 v. HOT6 revealed that under similar environmental conditions, NONWET heifers had increased RT, partially due to carry-over from HOT4–5. However, NONWET heifers had 40% lower feed intake but tended to have lower RR on HOT6 v. HOT1–3. Only RR of WET heifers was greater on HOT6, possibly a result of switching from a 4-h back to a 2-h sprinkling period, while maintaining a 62% greater intake (5.80 v. 3.58 kg/day) than NONWET heifers during this time. Results suggest that inconsistent cooling regimens may increase the susceptibility of cattle to heat stress and elicit different physiological and metabolic responses.


Sign in / Sign up

Export Citation Format

Share Document