scholarly journals Cellular and Synaptic Actions of Acetylcholine in the Lamprey Spinal Cord

2008 ◽  
Vol 100 (2) ◽  
pp. 1020-1031 ◽  
Author(s):  
Katharina A. Quinlan ◽  
James T. Buchanan

This study investigated cellular and synaptic mechanisms of cholinergic neuromodulation in the in vitro lamprey spinal cord. Most spinal neurons tested responded to local application of acetylcholine (ACh) with depolarization and decreased input resistance. The depolarization persisted in the presence of either tetrodotoxin or muscarinic antagonist scopolamine and was abolished with nicotinic antagonist mecamylamine, indicating a direct depolarization through nicotinic ACh receptors. Local application of muscarinic ACh agonists modulated synaptic strength in the spinal cord by decreasing the amplitude of unitary excitatory and inhibitory postsynaptic potentials. The postsynaptic response to direct application of glutamate was unchanged by muscarinic agonists, suggesting a presynaptic mechanism. Cholinergic feedback from motoneurons was assessed using stimulation of a ventral root in the quiescent spinal cord while recording intracellularly from spinal motoneurons or interneurons. Mainly depolarizing potentials were observed, a portion of which was insensitive to removal of extracellular Ca2+, indicating electrotonic coupling. Hyperpolarizing potentials were also observed and were attenuated by the glycinergic antagonist strychnine, whereas depolarizing responses were potentiated by strychnine. Mecamylamine also reduced hyperpolarizing responses. The pharmacology of these responses suggests a Renshaw-like feedback pathway in lamprey. Immunohistochemistry for choline acetyltransferase, performed in combination with retrograde filling of motoneurons, demonstrated a population of nonmotoneuron cholinergic cells in the lamprey spinal cord. Thus endogenous cholinergic modulation of the lamprey spinal locomotor network is likely produced by both motoneurons and cholinergic interneurons acting via combined postsynaptic and presynaptic actions.

2008 ◽  
Vol 100 (1) ◽  
pp. 474-481 ◽  
Author(s):  
Jonathan S. Carp ◽  
Ann M. Tennissen ◽  
Donna L. Mongeluzi ◽  
Christopher J. Dudek ◽  
Xiang Yang Chen ◽  
...  

In vitro slice preparations of CNS tissue are invaluable for studying neuronal function. However, up to now, slice protocols for adult mammal spinal motoneurons—the final common pathway for motor behaviors—have been available for only limited portions of the spinal cord. In most cases, these preparations have not been productive due to the poor viability of motoneurons in vitro. This report describes and validates a new slice protocol that for the first time provides reliable intracellular recordings from lumbar motoneurons of adult rats. The key features of this protocol are: preexposure to 100% oxygen; laminectomy prior to perfusion; anesthesia with ketamine/xylazine; embedding the spinal cord in agar prior to slicing; and, most important, brief incubation of spinal cord slices in a 30% solution of polyethylene glycol to promote resealing of the many motoneuron dendrites cut during sectioning. Together, these new features produce successful recordings in 76% of the experiments and an average action potential amplitude of 76 mV. Motoneuron properties measured in this new slice preparation (i.e., voltage and current thresholds for action potential initiation, input resistance, afterhyperpolarization size and duration, and onset and offset firing rates during current ramps) are comparable to those recorded in vivo. Given the mechanical stability and precise control over the extracellular environment afforded by an in vitro preparation, this new protocol can greatly facilitate electrophysiological and pharmacological study of these uniquely important neurons and other delicate neuronal populations in adult mammals.


2002 ◽  
Vol 87 (4) ◽  
pp. 2190-2194 ◽  
Author(s):  
Enrico Bracci ◽  
Diego Centonze ◽  
Giorgio Bernardi ◽  
Paolo Calabresi

The striatum is the main recipient of dopaminergic innervation. Striatal projection neurons are controlled by cholinergic and GABAergic interneurons. The effects of dopamine on projection neurons and cholinergic interneurons have been described. Its action on GABAergic interneurons, however, is still unknown. We studied the effects of dopamine on fast-spiking (FS) GABAergic interneurons in vitro, with intracellular recordings. Bath application of dopamine elicited a depolarization accompanied by an increase in membrane input resistance (an effect that persisted in the presence of tetrodotoxin) and action-potential discharge. These effects were mimicked by the D1-like dopamine receptor agonist SKF38393 but not by the D2-like agonist quinpirole. Evoked corticostriatal glutamatergic synaptic currents were not affected by dopamine. Conversely, GABAergic currents evoked by intrastriatal stimulation were reversibly depressed by dopamine and D2-like, but not D1-like, agonists. Cocaine elicited effects similar to those of dopamine on membrane potential and synaptic currents. These results show that endogenous dopamine exerts a dual excitatory action on FS interneurons, by directly depolarizing them (through D1-like receptors) and by reducing their synaptic inhibition (through presynaptic D2-like receptors).


2002 ◽  
Vol 88 (5) ◽  
pp. 2463-2476 ◽  
Author(s):  
Michelle M. Martin

Electrophysiological properties of lamprey spinal motoneurons were measured to determine whether their cellular properties change as the spinal cord goes from a quiescent state to the active state of fictive swimming. Intracellular microelectrode recordings of membrane potential were made from motoneurons in the isolated spinal cord preparation. Electrophysiological properties were first characterized in the quiescent spinal cord, and then fictive swimming was induced by perfusion with d-glutamate and the measurements were repeated. During the depolarizing excitatory phase of fictive swimming, the motoneurons had significantly reduced rheobase and significantly increased input resistance compared with the quiescent state, with no significant changes in these parameters during the repolarizing inhibitory phase of swimming. Spike threshold did not change significantly during fictive swimming compared with the quiescent state. During fictive swimming, the slope of the spike frequency versus injected current ( F-I) relationship decreased significantly as did spike-frequency adaptation and the amplitude of the slow after-spike hyperpolarization (sAHP). Serotonin is known to be released endogenously from the spinal cord during fictive swimming and is known to reduce the amplitude of the sAHP. Therefore the effects of serotonin on cellular properties were tested in the quiescent spinal cord. It was found that, in addition to reducing the sAHP amplitude, serotonin also reduced the slope of the F-I relationship and reduced spike-frequency adaptation, reproducing the changes observed in these parameters during fictive swimming. Application of spiperone, a serotonin antagonist, significantly increased the sAHP amplitude during fictive swimming but had no significant effect on F-I slope or adaptation. Because serotonin may act in part through reduction of calcium currents, the effect of calcium-free solution (cobalt substituted for calcium) was tested in the quiescent spinal cord. Similar to fictive swimming and serotonin application, the calcium-free solution significantly reduced the sAHP amplitude, the slope of the F-I relationship, and spike-frequency adaptation. These results suggest that there are significant changes in the firing properties of motoneurons during fictive swimming compared with the quiescent state, and it is possible that these changes may be attributed in part to the endogenous release of serotonin acting via reduction of calcium currents.


2006 ◽  
Vol 96 (4) ◽  
pp. 2042-2055 ◽  
Author(s):  
James F. Einum ◽  
James T. Buchanan

An in vitro preparation of the nervous system of the lamprey, a lower vertebrate, was used to characterize the properties of spinal neurons with axons projecting to the brain stem [i.e., spinobulbar (SB) neurons)]. To identify SB neurons, extracellular electrodes on each side of the spinal cord near the obex recorded the axonal spikes of neurons impaled with sharp intracellular microelectrodes in the rostral spinal cord. The ascending spinal neurons ( n = 144) included those with ipsilateral (iSB) (63/144), contralateral (cSB) (77/144), or bilateral (bSB) (4/144) axonal projections to the brain stem. Intracellular injection of biocytin revealed that the SB neurons had small- to medium-size somata and most had dendrites confined to the ipsilateral side of the cord, although about half of the cSB neurons also had contralateral dendrites. Most SB neurons had multiple axonal branches including descending axons. Electrophysiologically, the SB neurons were similar to other lamprey spinal neurons, firing spikes throughout long depolarizing pulses with some spike-frequency adaptation. Paired intracellular recordings between SB and reticulospinal (RS) neurons revealed that SB neurons made either excitatory or inhibitory synapses on RS neurons and the SB neurons received excitatory input from RS neurons. Mutual excitation and feedback inhibition between pairs of RS and SB neurons were observed. The SB neurons also received excitatory inputs from primary mechanosensory neurons (dorsal cells), and these same SB neurons were rhythmically active during fictive swimming, indicating that SB neurons convey both sensory and locomotor network information to the brain stem.


2011 ◽  
Vol 105 (2) ◽  
pp. 731-748 ◽  
Author(s):  
Katherine C. Murray ◽  
Marilee J. Stephens ◽  
Edmund W. Ballou ◽  
Charles J. Heckman ◽  
David J. Bennett

Immediately after spinal cord injury (SCI), a devastating paralysis results from the loss of brain stem and cortical innervation of spinal neurons that control movement, including a loss of serotonergic (5-HT) innervation of motoneurons. Over time, motoneurons recover from denervation and function autonomously, exhibiting large persistent calcium currents (Ca PICs) that both help with functional recovery and contribute to uncontrolled muscle spasms. Here we systematically evaluated which 5-HT receptor subtypes influence PICs and spasms after injury. Spasms were quantified by recording the long-lasting reflexes (LLRs) on ventral roots in response to dorsal root stimulation, in the chronic spinal rat, in vitro. Ca PICs were quantified by intracellular recording in synaptically isolated motoneurons. Application of agonists selective to 5-HT2B and 5-HT2C receptors (including BW723C86) significantly increased the LLRs and associated Ca PICs, whereas application of agonists to 5-HT1, 5-HT2A, 5-HT3, or 5-HT4/5/6/7 receptors (e.g., 8-OH-DPAT) did not. The 5-HT2 receptor agonist–induced increases in LLRs were dose dependent, with doses for 50% effects (EC50) highly correlated with published doses for agonist receptor binding ( Ki) at 5-HT2B and 5-HT2C receptors. Application of selective antagonists to 5-HT2B (e.g., RS127445) and 5-HT2C (SB242084) receptors inhibited the agonist-induced increase in LLR. However, antagonists that are known to specifically be neutral antagonists at 5-HT2B/C receptors (e.g., RS127445) had no effect when given by themselves, indicating that these receptors were not activated by residual 5-HT in the spinal cord. In contrast, inverse agonists (such as SB206553) that block constitutive activity at 5-HT2B or 5-HT2C receptors markedly reduced the LLRs, indicating the presence of constitutive activity in these receptors. 5-HT2B or 5-HT2C receptors were confirmed to be on motoneurons by immunolabeling. In summary, 5-HT2B and 5-HT2C receptors on motoneurons become constitutively active after injury and ultimately contribute to recovery of motoneuron function and emergence of spasms.


2001 ◽  
Vol 85 (5) ◽  
pp. 2166-2176 ◽  
Author(s):  
Nikolai Chub ◽  
Michael J. O'Donovan

Whole cell recordings were obtained from ventral horn neurons in spontaneously active spinal cords isolated from the chick embryo [ embryonic days 10 to 11 ( E10–E11)] to examine the post-episode depression of GABAergic transmission. Spontaneous activity occurred as recurrent, rhythmic episodes approximately 60 s in duration with 10- to 15-min quiescent inter-episode intervals. Current-clamp recording revealed that episodes were followed by a transient hyperpolarization (7 ± 1.2 mV, mean ± SE), which dissipated as a slow (0.5–1 mV/min) depolarization until the next episode. Local application of bicuculline 8 min after an episode hyperpolarized spinal neurons by 6 ± 0.8 mV and increased their input resistance by 13%, suggesting the involvement of GABAergic transmission. Gramicidin perforated-patch recordings showed that the GABAa reversal potential was above rest potential ( E GABAa = −29 ± 3 mV) and allowed estimation of the physiological intracellular [Cl−] = 50 mM. In whole cell configuration (with physiological electrode [Cl−]), two distinct types of endogenous GABAergic currents ( I GABAa) were found during the inter-episode interval. The first comprised TTX-resistant, asynchronous miniature postsynaptic currents (mPSCs), an indicator of quantal GABA release (up to 42% of total mPSCs). The second (tonic I GABAa) was complimentary to the slow membrane depolarization and may arise from persistent activation of extrasynaptic GABAa receptors. We estimate that approximately 10 postsynaptic channels are activated by a single quantum of GABA release during an mPSC and that about 30 extrasynaptic GABAa channels are required for generation of the tonic I GABAa in ventral horn neurons. We investigated the post-episode depression of I GABAa by local application of GABA or isoguvacine (100 μM, for 10–30 s) applied before and after an episode at holding potentials ( V hold) −60 mV. The amplitude of the evoked I GABA was compared after clamping the cell during the episode at one of three different V hold: −60 mV, below E GABAa resulting in Cl− efflux; −30 mV, close to E GABAa with minimal Cl− flux; and 0 mV, above E GABAa resulting in Cl− influx during the episode. The amplitude of the evoked I GABA changed according to the direction of Cl− flux during the episode: at −60 mV a 41% decrease, at −30 mV a 4% reduction, and at 0 mV a 19% increase. These post-episode changes were accompanied by shifts of E GABAa of −10, −1.2, and +7 mV, respectively. We conclude that redistribution of intracellular [Cl−] during spontaneous episodes is likely to be an important postsynaptic mechanism involved in the post-episode depression of GABAergic transmission in chick embryo spinal neurons.


1980 ◽  
Vol 58 (6) ◽  
pp. 650-655 ◽  
Author(s):  
K. C. Marshall ◽  
I. Engberg

The effects of iontophoretically applied hydrogen ion (H+) on neuronal excitability were studied in the spinal cord of cats. The activity of extracellularly recorded neurons of the dorsal horn was either depressed or enhanced by H+ and in most cases of enhancement there was a preceding phase of depression. During intracellular recordings from motoneurons it was found that H+ application usually caused a hyperpolarization accompanied by an increase in cell input resistance. In a smaller number of cells the hyperpolarization was succeeded by a depolarization that was coupled with a decrease in input resistance. In some neurons it was shown that the depolarizing phase was more prominent and had a shorter latency when larger currents were used to eject H+. The varied reports from earlier studies of excitation or inhibition of neuronal excitability by H+ may be in part explainable by our observations that the effects may depend on the concentrations of H+ used.


2015 ◽  
Vol 114 (5) ◽  
pp. 2661-2671 ◽  
Author(s):  
M. A. Tadros ◽  
R. Lim ◽  
D. I. Hughes ◽  
A. M. Brichta ◽  
R. J. Callister

The spinal cord is critical for modifying and relaying sensory information to, and motor commands from, higher centers in the central nervous system to initiate and maintain contextually relevant locomotor responses. Our understanding of how spinal sensorimotor circuits are established during in utero development is based largely on studies in rodents. In contrast, there is little functional data on the development of sensory and motor systems in humans. Here, we use patch-clamp electrophysiology to examine the development of neuronal excitability in human fetal spinal cords (10–18 wk gestation; WG). Transverse spinal cord slices (300 μm thick) were prepared, and recordings were made, from visualized neurons in either the ventral (VH) or dorsal horn (DH) at 32°C. Action potentials (APs) could be elicited in VH neurons throughout the period examined, but only after 16 WG in DH neurons. At this age, VH neurons discharged multiple APs, whereas most DH neurons discharged single APs. In addition, at 16–18 WG, VH neurons also displayed larger AP and after-hyperpolarization amplitudes than DH neurons. Between 10 and 18 WG, the intrinsic properties of VH neurons changed markedly, with input resistance decreasing and AP and after-hyperpolarization amplitudes increasing. These findings are consistent with the hypothesis that VH motor circuitry matures more rapidly than the DH circuits that are involved in processing tactile and nociceptive information.


2007 ◽  
Vol 98 (2) ◽  
pp. 613-628 ◽  
Author(s):  
Sabrina Tazerart ◽  
Jean-Charles Viemari ◽  
Pascal Darbon ◽  
Laurent Vinay ◽  
Frédéric Brocard

The persistent sodium current ( INaP) is known to play a role in rhythm generation in different systems. Here, we investigated its contribution to locomotor pattern generation in the neonatal rat spinal cord. The locomotor network is mainly located in the ventromedial gray matter of upper lumbar segments. By means of whole cell recordings in slices, we characterized membrane and INaP biophysical properties of interneurons located in this area. Compared with motoneurons, interneurons were more excitable, because of higher input resistance and membrane time constant, and displayed lower firing frequency arising from broader spikes and longer AHPs. Ramp voltage-clamp protocols revealed a riluzole- or TTX-sensitive inward current, presumably INaP, three times smaller in interneurons than in motoneurons. However, in contrast to motoneurons, INaP mediated a prolonged plateau potential in interneurons after reducing K+ and Ca2+ currents. We further used in vitro isolated spinal cord preparations to investigate the contribution of INaP to locomotor pattern. Application of riluzole (10 μM) to the whole spinal cord or to the upper lumbar segments disturbed fictive locomotion, whereas application of riluzole over the caudal lumbar segments had no effect. The effects of riluzole appeared to arise from a specific blockade of INaP because action potential waveform, dorsal root–evoked potentials, and miniature excitatory postsynaptic currents were not affected. This study provides new functional features of ventromedial interneurons, with the first description of INaP-mediated plateau potentials, and new insights into the operation of the locomotor network with a critical implication of INaP in stabilizing the locomotor pattern.


2000 ◽  
Vol 83 (5) ◽  
pp. 2497-2507 ◽  
Author(s):  
David Parker

The modulatory effects of neuropeptides on descending inputs to the spinal cord have been examined by making paired recordings from reticulospinal axons and spinal neurons in the lamprey. Four peptides were examined; peptide YY (PYY) and cholecystokinin (CCK), which are contained in brain stem reticulospinal neurons, and calcitonin-gene–related peptide (CGRP) and neuropeptide Y (NPY), which are contained in primary afferents and sensory interneurons, respectively. Each of the peptides reduced the amplitude of monosynaptic reticulospinal-evoked excitatory postsynaptic potentials (EPSPs). The modulation appeared to be presynaptic, because postsynaptic input resistance and membrane potential, the amplitude of the electrical component of the EPSP, postsynaptic responses to glutamate, and spontaneous miniature EPSP amplitudes were unaffected. In addition, none of the peptides affected the pattern of N-methyl-d-aspartate (NMDA)–evoked locomotor activity in the isolated spinal cord. Potential interactions between the peptides were also examined. The “brain stem peptides” CCK and PYY had additive inhibitory effects on reticulospinal inputs, as did the “sensory peptides” CGRP and NPY. Brain stem peptides also had additive inhibitory effects when applied with sensory peptides. However, sensory peptides increased or failed to affect the amplitude of reticulospinal inputs in the presence of the brain stem peptides. These interactive effects also appear to be mediated presynaptically. The functional consequence of the peptidergic modulation was investigated by examining spinal ventral root responses elicited by brain stem stimulation. CCK and CGRP both reduced ventral root responses, although in interaction both increased the response. These results thus suggest that neuropeptides presynaptically influence the descending activation of spinal locomotor networks, and that they can have additive or novel interactive effects depending on the peptides examined and the order of their application.


Sign in / Sign up

Export Citation Format

Share Document