Effects of cooling somatosensory cortex on response properties of tactile cells in the superior colliculus

1986 ◽  
Vol 55 (6) ◽  
pp. 1352-1368 ◽  
Author(s):  
H. R. Clemo ◽  
B. E. Stein

The corticotectal influences of somatosensory cortex were investigated by using reversible deactivation of cortex by cooling. More than half of the somatosensory superior colliculus (SC) cells studied exhibited a response depression (often not apparent qualitatively) or an elimination of responses to somatosensory stimuli during the period in which cortex was rendered inactive. Responses were restored to their initial levels by cortical rewarming. Hyperresponsiveness was never observed as a consequence of cortical cooling. Susceptibility to cooling-induced depression was not invariably linked to a specific cell type, location in the SC, or receptive-field size. Yet cells that had small receptive fields and were activated by hair displacement had the highest probability of being affected by this procedure. In some cells a contraction of the receptive field was induced by cortical cooling. This observation is consistent with previous experiments that showed that SC somatosensory receptive fields are constructed by the convergence of ascending and descending inputs and indicates that the responsiveness of specific receptive-field regions may depend on the functional integrity of cortex. Two cortical regions were found to produce cooling-induced effects in somatosensory SC cells: 1) SIV (and para-SIV), located in the anterior ectosylvian sulcus, and 2) the cortex within the rostral suprasylvian sulcus. These results indicate that somatosensory cortex, like visual cortex, plays a critical role in modulating the responses of SC cells. Apparently, the ability of both somatosensory and visual SC cells to code the presence of peripheral stimuli depends largely on the functional influences of their respective cortices. However, in contrast to previous observations on visual corticotectal influences, no specific receptive-field properties could be shown to be impressed on SC cells by somatosensory cortex.

Author(s):  
W. Schellekens ◽  
M. Thio ◽  
S. Badde ◽  
J. Winawer ◽  
N. Ramsey ◽  
...  

AbstractSeveral neuroimaging studies have shown the somatotopy of body part representations in primary somatosensory cortex (S1), but the functional hierarchy of distinct subregions in human S1 has not been adequately addressed. The current study investigates the functional hierarchy of cyto-architectonically distinct regions, Brodmann areas BA3, BA1, and BA2, in human S1. During functional MRI experiments, we presented participants with vibrotactile stimulation of the fingertips at three different vibration frequencies. Using population Receptive Field (pRF) modeling of the fMRI BOLD activity, we identified the hand region in S1 and the somatotopy of the fingertips. For each voxel, the pRF center indicates the finger that most effectively drives the BOLD signal, and the pRF size measures the spatial somatic pooling of fingertips. We find a systematic relationship of pRF sizes from lower-order areas to higher-order areas. Specifically, we found that pRF sizes are smallest in BA3, increase slightly towards BA1, and are largest in BA2, paralleling the increase in visual receptive field size as one ascends the visual hierarchy. Additionally, we find that the time-to-peak of the hemodynamic response in BA3 is roughly 0.5 s earlier compared to BA1 and BA2, further supporting the notion of a functional hierarchy of subregions in S1. These results were obtained during stimulation of different mechanoreceptors, suggesting that different afferent fibers leading up to S1 feed into the same cortical hierarchy.


2001 ◽  
Vol 86 (3) ◽  
pp. 1179-1194 ◽  
Author(s):  
L. Huang ◽  
S. L. Pallas

Partial ablation of the superior colliculus (SC) at birth in hamsters compresses the retinocollicular map, increasing the amount of visual field represented at each SC location. Receptive field sizes of single SC neurons are maintained, however, preserving receptive field properties in the prelesion condition. The mechanism that allows single SC neurons to restrict the number of convergent retinal inputs and thus compensate for induced brain damage is unknown. In this study, we examined the role of N-methyl-d-aspartate (NMDA) receptors in controlling retinocollicular convergence. We found that chronic 2-amino-5-phosphonovaleric acid (APV) blockade of NMDA receptors from birth in normal hamsters resulted in enlarged single-unit receptive fields in SC neurons from normal maps and further enlargement in lesioned animals with compressed maps. The effect was linearly related to lesion size. These results suggest that NMDA receptors are necessary to control afferent/target convergence in the normal SC and to compensate for excess retinal afferents in lesioned animals. Despite the alteration in receptive field size in the APV-treated animals, a complete visual map was present in both normal and lesioned hamsters. Visual responsiveness in the treated SC was normal; thus the loss of compensatory plasticity was not due to reduced visual responsiveness. Our results argue that NMDA receptors are essential for map refinement, construction of receptive fields, and compensation for damage but not overall map compression. The results are consistent with a role for the NMDA receptor as a coincidence detector with a threshold, providing visual neurons with the ability to calculate the amount of visual space represented by competing retinal inputs through the absolute amount of coincidence in their firing patterns. This mechanism of population matching is likely to be of general importance during nervous system development.


1984 ◽  
Vol 52 (6) ◽  
pp. 1066-1093 ◽  
Author(s):  
R. W. Dykes ◽  
P. Landry ◽  
R. Metherate ◽  
T. P. Hicks

Extracellular recordings of 209 neurons were obtained with carbon fiber-containing multibarrel micropipettes. The cells were isolated in the primary somatosensory cortex of cats anesthetized with barbiturate and classified according to the nature of their response to natural stimuli, the nature of the surrounding multiunit responses to the same stimuli, the response to thalamic stimulation, and their depth in the cortex. To study factors controlling the excitability of somatosensory neurons, their receptive fields were examined in the presence of iontophoretically administered gamma-aminobutyric acid (GABA), glutamate, and bicuculline methiodide (BMI). Even when the neurons were depolarized to perithreshold levels with glutamate, or when local inhibitory influences mediated by GABA were antagonized by BMI, the apparent specificity for one class of afferent input was maintained. Neurons responding to stimulation of either cutaneous or deep receptors maintained their modality specificity, and neurons in cutaneous rapidly adapting regions never took on slowly adapting properties. When ejected at currents that did not elicit action potentials, glutamate lowered the threshold for activation by cutaneous stimuli but did not enlarge the receptive field. With larger ejecting currents, the neurons developed an on-going discharge, but even at these higher doses, glutamate did not produce an increase in the receptive-field size. Some neurons in regions of cortex exhibiting slowly adapting multiunit responses were relatively insensitive to glutamate. These cells required four to five times more glutamate to evoke discharges than did most neurons. Other cells, previously unresponsive to somatic stimuli, could be shown to possess distinct cutaneous receptive fields when either glutamate or BMI was ejected in their vicinity. Iontophoretically administered BMI altered the firing pattern of somatosensory neurons, causing them to discharge in bursts of 3-15 impulses. BMI enlarged the receptive-field size of neurons in regions displaying rapidly adapting multiunit background discharges but not in those regions with slowly adapting multiunit discharges. This differential effect of BMI, suggesting that GABA controls receptive-field size in rapidly adapting regions, also indicates that neurons in rapidly adapting regions differ pharmacologically from those in other submodality regions. In all cortical regions, BMI blocked the poststimulus inhibitory period that normally followed thalamic stimulation.(ABSTRACT TRUNCATED AT 400 WORDS)


1999 ◽  
Vol 16 (1) ◽  
pp. 121-130 ◽  
Author(s):  
MIN KE ◽  
RICHARD D. MOONEY ◽  
ROBERT W. RHOADES

Administration of a single subcutaneous dose of 5,7-dihydroxytryptamine (5,7-DHT) to newborn hamsters results in a significant increase in the density of serotoninergic (5-HT) fibers in the superficial layers of the superior colliculus (SC) and marked abnormalities in the uncrossed retinotectal projection when these animals reach adulthood (Rhoades et al., 1993). The present study was undertaken to determine whether elevation of 5-HT in the developing SC altered the visual representation in SC. Multi-unit recordings from SC cells demonstrated that the overall organization of the visual map in the superficial SC laminae was normal and that the receptive-field sizes for unit clusters were unchanged in the 5,7-DHT-treated animals. However, when a combination of CNQX and MK-801 was directly applied to the SC to block postsynaptic activity, the receptive fields of unit clusters (presumably retinotectal axon terminals) in the 5,7-DHT treated animals were significantly larger than those in the normally reared hamsters. These results are consistent with the conclusions that elevation of 5-HT levels in the developing SC reduces the postnatal refinement of the crossed retinotectal axons, and that mechanisms operating within the SC may act to maintain normal sizes for the receptive fields of its constituent neurons.


2006 ◽  
Vol 23 (1) ◽  
pp. 137-142 ◽  
Author(s):  
WAYNE MICHAEL KING ◽  
VIMAL SARUP ◽  
YVES SAUVÉ ◽  
COLLEEN M. MORELAND ◽  
DAVID O. CARPENTER ◽  
...  

Glaucoma is a major cause of blindness and is characterized by death of retinal ganglion cells. In a rat model of glaucoma in which intraocular pressure is raised by cautery of episcleral veins, the somata and dendritic arbors of surviving retinal ganglion cells expand. To assess physiological consequences of this change, we have measured visual receptive-field size in a primary retinal target, the superior colliculus. Using multiunit recording, receptive-field sizes were measured for glaucomatous eyes and compared to both those measured for contralateral control eyes and to homolateral eyes of unoperated animals. Episcleral vein occlusion increased intraocular pressure. This was accompanied by a significant increase in receptive-field size across the superior colliculus. The expansion of receptive fields was proportional to both degree and duration of the increase of intraocular pressure. We suggest that this increase in the size of receptive fields of glaucomatous eyes may be related to the increase in the size of dendritic arbors of the surviving ganglion cells in retina.


2021 ◽  
Author(s):  
W. Schellekens ◽  
M. Thio ◽  
S. Badde ◽  
J. Winawer ◽  
N. Ramsey ◽  
...  

AbstractSeveral neuroimaging studies have shown the somatotopy of body part representations in primary somatosensory cortex (S1), but the functional hierarchy of distinct subregions in human S1 has not been adequately addressed. The current study investigates the functional hierarchy of cyto-architectonically distinct regions, Brodmann areas BA3, BA1, and BA2, in human S1. During functional MRI experiments, we presented participants with vibrotactile stimulation of the fingertips at 3 different vibration frequencies. Using population Receptive Field (pRF) modeling of the fMRI BOLD activity, we identified the hand region in S1 and the somatotopy of the fingertips. For each voxel, the pRF center indicates the finger that most effectively drives the BOLD signal, and the pRF size measures the spatial somatic pooling of fingertips. We find a systematic relationship of pRF sizes from lower-order areas to higher-order areas. Specifically, we found that pRF sizes are smallest in BA3, increase slightly towards BA1, and are largest in BA2, paralleling the increase in visual receptive field size as one ascends the visual hierarchy. Additionally, we find that the time-to-peak of the hemodynamic response in BA3 is roughly 0.5s earlier compared to BA1 and BA2, further supporting the notion of a functional hierarchy of subregions in S1. These results were obtained during stimulation of different mechanoreceptors, suggesting that different afferent fibers leading up to S1 feed into the same cortical hierarchy.


1993 ◽  
Vol 90 (23) ◽  
pp. 11142-11146 ◽  
Author(s):  
S Bisti ◽  
C Trimarchi

Prenatal unilateral enucleation in mammals causes an extensive anatomical reorganization of visual pathways. The remaining eye innervates the entire extent of visual subcortical and cortical areas. Electrophysiological recordings have shown that the retino-geniculate connections are retinotopically organized and geniculate neurones have normal receptive field properties. In area 17 all neurons respond to stimulation of the remaining eye and retinotopy, orientation columns, and direction selectivity are maintained. The only detectable change is a reduction in receptive field size. Are these changes reflected in the visual behavior? We studied visual performance in cats unilaterally enucleated 3 weeks before birth (gestational age at enucleation, 39-42 days). We tested behaviorally the development of visual acuity and, in the adult, the extension of the visual field and the contrast sensitivity. We found no difference between prenatal monocularly enucleated cats and controls in their ability to orient to targets in different positions of the visual field or in their visual acuity (at any age). The major difference between enucleated and control animals was in contrast sensitivity:prenatal enucleated cats present a loss in sensitivity for gratings of low spatial frequency (below 0.5 cycle per degree) as well as a slight increase in sensitivity at middle frequencies. We conclude that prenatal unilateral enucleation causes a selective change in the spatial performance of the remaining eye. We suggest that this change is the result of a reduction in the number of neurones with large receptive fields, possibly due to a severe impairment of the Y system.


1983 ◽  
Vol 50 (4) ◽  
pp. 896-909 ◽  
Author(s):  
B. E. Stein ◽  
R. F. Spencer ◽  
S. B. Edwards

Substantial corticotectal (and corticothalamic) projections from the cortex of the anterior ectosylvian sulcus (AES) were demonstrated in the cat using the axonal transport methods of autoradiography and horseradish peroxidase. The corticotectal projection arises nearly exclusively from medium-large pyramidal cells in lamina V. One of the densest projecting areas of the AES is the rostral aspect of its superior bank, where a fourth somatotopic representation (SIV) has recently been demonstrated. It terminates in the intermediate and deep laminae of the superior colliculus, where somatic cells are located. The pathway is bilateral but much heavier ipsilaterally than contralaterally. In contrast to the substantial corticotectal projection from SIV and adjacent tissue, there was no unequivocal evidence for a corticotectal projection from traditional somatosensory cortex SI-SIII. This finding, that somatosensory projections to the cat superior colliculus arise from an area outside of SI-SIII, was unexpected on the basis of what is known about visual corticotectal projections. However, it is consistent with the patterns of other cortical projections that terminate in the intermediate and deep laminae of this structure and with the absence of demonstrable corticotectal influences from SI to SIII in this animal. These data are in contrast to demonstrations by other investigators that there is a corticotectal projection from SI cortex in rodents. Apparently there is a fundamental species difference in the organization of descending somatosensory pathways. A corticothalamic projection of the AES was also observed. This descending projection appeared to form a shell of labeled cells and fibers around the ventrobasal complex, but unequivocal terminal labeling within the ventrobasal complex could not be demonstrated. Dense terminal labeling was apparent in the posterior group of thalamic nuclei (PO) where thalamocortical afferents to the AES originate.


1998 ◽  
Vol 80 (6) ◽  
pp. 2882-2892 ◽  
Author(s):  
Christopher I. Moore ◽  
Sacha B. Nelson

Moore, Christopher I. and Sacha B. Nelson. Spatio-temporal subthreshold receptive fields in the vibrissa representation of rat primary somatosensory cortex. J. Neurophysiol. 80: 2882–2892, 1998. Whole cell recordings of synaptic responses evoked by deflection of individual vibrissa were obtained from neurons within adult rat primary somatosensory cortex. To define the spatial and temporal properties of subthreshold receptive fields, the spread, amplitude, latency to onset, rise time to half peak amplitude, and the balance of excitation and inhibition of subthreshold input were quantified. The convergence of information onto single neurons was found to be extensive: inputs were consistently evoked by vibrissa one- and two-away from the vibrissa that evoked the largest response (the “primary vibrissa”). Latency to onset, rise time, and the incidence and strength of inhibitory postsynaptic potentials (IPSPs) varied as a function of position within the receptive field and the strength of evoked excitatory input. Nonprimary vibrissae evoked smaller amplitude subthreshold responses [primary vibrissa, 9.1 ± 0.84 (SE) mV, n = 14; 1-away, 5.1 ± 0.5 mV, n = 38; 2-away, 3.7 ± 0.59 mV, n = 22; 3-away, 1.3 ± 0.70 mV, n = 8] with longer latencies (primary vibrissa, 10.8 ± 0.80 ms; 1-away, 15.0 ± 1.2 ms; 2-away, 15.7 ± 2.0 ms). Rise times were significantly faster for inputs that could evoke action potential responses (suprathreshold, 4.1 ± 1.3 ms, n = 8; subthreshold, 12.4 ± 1.5 ms, n = 61). In a subset of cells, sensory evoked IPSPs were examined by deflecting vibrissa during injection of hyperpolarizing and depolarizing current. The strongest IPSPs were evoked by the primary vibrissa ( n = 5/5), but smaller IPSPs also were evoked by nonprimary vibrissae ( n = 8/13). Inhibition peaked by 10–20 ms after the onset of the fastest excitatory input to the cortex. This pattern of inhibitory activity led to a functional reversal of the center of the receptive field and to suppression of later-arriving and slower-rising nonprimary inputs. Together, these data demonstrate that subthreshold receptive fields are on average large, and the spatio-temporal dynamics of these receptive fields vary as a function of position within the receptive field and strength of excitatory input. These findings constrain models of suprathreshold receptive field generation, multivibrissa interactions, and cortical plasticity.


2005 ◽  
Vol 93 (6) ◽  
pp. 3537-3547 ◽  
Author(s):  
Chong Weng ◽  
Chun-I Yeh ◽  
Carl R. Stoelzel ◽  
Jose-Manuel Alonso

Each point in visual space is encoded at the level of the thalamus by a group of neighboring cells with overlapping receptive fields. Here we show that the receptive fields of these cells differ in size and response latency but not at random. We have found that in the cat lateral geniculate nucleus (LGN) the receptive field size and response latency of neighboring neurons are significantly correlated: the larger the receptive field, the faster the response to visual stimuli. This correlation is widespread in LGN. It is found in groups of cells belonging to the same type (e.g., Y cells), and of different types (i.e., X and Y), within a specific layer or across different layers. These results indicate that the inputs from the multiple geniculate afferents that converge onto a cortical cell (approximately 30) are likely to arrive in a sequence determined by the receptive field size of the geniculate afferents. Recent studies have shown that the peak of the spatial frequency tuning of a cortical cell shifts toward higher frequencies as the response progresses in time. Our results are consistent with the idea that these shifts in spatial frequency tuning arise from differences in the response time course of the thalamic inputs.


Sign in / Sign up

Export Citation Format

Share Document