Serotonergic/cholinergic muscle receptor cells in the crab stomatogastric nervous system. I. Identification and characterization of the gastropyloric receptor cells

1989 ◽  
Vol 62 (2) ◽  
pp. 558-570 ◽  
Author(s):  
P. S. Katz ◽  
M. H. Eigg ◽  
R. M. Harris-Warrick

1. Serotonin (5-hydroxytryptamine) immunohistochemistry was used to locate and anatomically describe a set of four muscle receptor cells in the stomatogastric nervous system of the crabs Cancer borealis and Cancer irroratus. We found that these sensory cells, which we named gastropyloric receptor (GPR) cells, are the sole source of serotonergic inputs to the stomatogastric ganglion (STG) in these species. Thus any endogenous serotonergic modulation of the central pattern generators (CPGs) in the STG must be afferent and not descending from other ganglia. 2. There are two bilateral pairs of GPR cells. Each pair consists of two cell types (GPR1 and GPR2) based on differences in muscle innervation and physiological response characteristics. GPR2 responds in a mostly tonic fashion to increases in muscle tension caused by passive stretch or motor neuron-evoked contraction, whereas GPR1 responds more phasically and adapts more rapidly. Both GPR cell types project to the midline STG and terminate in each of the bilaterally paired commissural ganglia (COGs). 3. The GPR cells have sensory endings unlike any described for other muscle receptor cells: the terminals enter invaginations of the muscle surface and end near the z-bands of the muscle. These novel structures may be involved in the sensory transduction process. 4. The GPR cells may contain acetylcholine in addition to serotonin, as indicated by the presence of choline acetyltransferase (ChAT) in GPR2 (Table 1) and probably GPR1 as well. 5. The GPR cells have no direct effect on muscle properties or neuromuscular transmission: excitatory junctional potential (EJP) amplitude and motor neuron-evoked tension are unaffected by GPR stimulation. However, very low concentrations of exogenously applied serotonin do cause an increase in motor neuron-evoked muscle tension, probably reflecting a hormonal action of the amine. 6. The activity of GPR2 was monitored in a semi-intact preparation. GPR2 is active in phase with normal movements of the gastric mill. GPR2 is also capable of endogenous rhythmic activity. This indicates that even in the absence of mechanical stimulation, the GPR cells may still provide patterned input to the CPGs in the STG. 7. The GPR cells are proprioceptive cells that use serotonin and acetylcholine as cotransmitters. It is important to characterize these cells to understand the role of serotonergic modulation in the production of motor programs by stomatogastric CPGs.

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Tai-Heng Chen ◽  
Jun-An Chen

Two crucial questions in neuroscience are how neurons establish individual identity in the developing nervous system and why only specific neuron subtypes are vulnerable to neurodegenerative diseases. In the central nervous system, spinal motor neurons serve as one of the best-characterized cell types for addressing these two questions. In this review, we dissect these questions by evaluating the emerging role of regulatory microRNAs in motor neuron generation in developing embryos and their potential contributions to neurodegenerative diseases such as spinal muscular atrophy (SMA). Given recent promising results from novel microRNA-based medicines, we discuss the potential applications of microRNAs for clinical assessments of SMA disease progression and treatment.


1997 ◽  
Vol 200 (24) ◽  
pp. 3221-3233 ◽  
Author(s):  
A J Tierney ◽  
J Blanck ◽  
J Mercier

Whole-mount immunocytochemistry was used to map the location of FMRFamide-like peptides in the crayfish (Procambarus clarkii) stomatogastric nervous system. This system contains the pyloric and gastric mill central pattern generators, which receive modulatory inputs from projection neurons with somata located primarily in other ganglia of the stomatogastric nervous system. Our studies revealed stained somata in the commissural and esophageal ganglia. A pair of stained somata was located in the inferior ventricular nerve, and another pair of somata was located in the stomatogastric nerve where it is joined by the two superior esophageal nerves. The stomatogastric ganglion contained no stained somata, but the neuropil was brightly stained and 2-4 axons projected laterally in small nerves directly from the ganglion. These results indicate that FMRFamide or related peptides may act as neuromodulators in the crayfish stomatogastric nervous system. To test this hypothesis, we studied the effects of FMRFamide and four related peptides (DF2, NF1, F1 and LMS) on the pyloric motor pattern. DF2, NF1 and F1 all excited certain pyloric cells, especially the lateral pyloric (LP) and ventricular dilator (VD) neurons, and enhanced pyloric cycling frequency in most actively rhythmic preparations. FMRFamide had no detectable effects on pyloric cells, and LMS had inhibitory effects, causing disruption of the pyloric rhythm in actively cycling preparations and reducing tonic activity in non-rhythmic preparations.


The trochophore larva of the polychaete Spirobranchus polycerus is described, based on ultrastructural surveys and three dimensional reconstructions, with emphasis on the structure and organization of the nervous system. A complete and detailed description is provided of the larval parts of the nervous system at the cellular level for the 48 h stage, by which time the larval system is fully developed in most respects. The adult nervous system, whose rudiments form a largely separate system of nerves and nerve cells, appears progressively during later development. Its principal structures, the brain, commissures and ventral cords, are briefly described based on an examination of the metatrochophore. The larval nervous system is entirely presegmental and is divisible into two parts: (1) a system of pretrochal cells and nerves arising from them that innervates the prototroch, linking it to the apical organ and the single larval eye, and (2) a system of intratrochal and intraepithelial nerves supplying the feeding apparatus of the larva. The latter consists of two nerves that encircle the pharynx and join basally beneath the cluster of cells that make up the basal pharyngeal complex. The pharyngeal nerves are then linked by means of a suboral complex of four sensory cells and their nerves to the nerves supplying the metatroch and neurotroch. The two parts of the larval system are anatomically separate and develop separately, each in association with its own organizational centres. These are: the apical organ and its central plexus in the case of the pretrochal system, and the suboral and pharyngeal complexes in the case of the oral and pharyngeal nerves. Like the larva itself, the larval nervous system is specialized and highly reduced. There are comparatively few cells, but a number of distinctive cell types. At 48 h, the larval system comprises 36 cells, including among these between 16 and 18 recognizably different types of sensory and non-sensory nerve cells and non-neural accessory cells. The majority of the cells are individually identifiable by morphology, ultrastructure and location, and are invariant or nearly so from larva to larva. The development of the system as a whole involves production of fibres by certain of these followed by fibre growth either along preestablished pathways, for example along the trochal bands or cells derived from these, or towards identifiable targets, for example, the apical plexus or pharyngeal complex. The resulting system varies little from larva to larva, and neurogenesis appears therefore to be a very precisely controlled developmental process. However, the individual cellular events that occur as parts of this process, do exhibit considerable diversity, both in terms of the cell types involved and of the types of interactions that occur between them, which raises the question of how the degree of developmental precision required by Spirobranchus is achieved. Cell lineage and lineage-dependent phenomena are clearly important, but it is not clear how concepts arising from linage studies in other organisms, e.g. in nematodes or other spiralia, should be applied in dealing with this particular case. Besides being anatomically separate, the two main parts of the larval nervous system evidently also have different evolutionary origins. Comparison of the Spirobranchus trochophore with the closely related M uller’s larva of polyclads supports the idea that the pretrochal system of the former is derived secondarily from the adult nervous system of some ancestral form despite the fact that it innervates a strictly larval organ, the protrotroch. Conversely, the nerves supplying the trochophore oral apparatus, which includes secondarily-derived adult structures like the pharynx, are of larval origin, probably derived by rearrangement from the nerves of a series of primitive trochal bands. The basic features of the oral apparatus in both Muller’s larva and the trochophore can be accounted for by assuming the existence of an ancestral larva with three circumferential trochal bands. Two of these would then be incorporated into the stomodeum as it evolved, with their nerves being retained as stomodeal structures in modern forms. This interpretation emphasizes (1) the evolutionary conservatism of the larval nervous system, i.e. larval nerves change less in organization and arrangement than the structures they innervate, which makes them important phylogenetic indicators, and (2) the importance of the evolutionary continuity of the mouth in protosomes as a justification for comparative studies of the oral apparatus in spiralian larvae that seek to establish homologies between them. In the case at hand, it is concluded that the oral apparatus of M uller’s larva and the trochopore, excluding the anus of the latter, are homologous. The functional operation of the larval nervous system in Spirobranchus is discussed briefly and in general terms. The larval nerve cells show a low degree of morphological differentiation, and specialized cell junctions (e.g., synapses) are largely absent, so only a rudimentary understanding of the circuitry of the larval system is possible. Further, it is not clear to what extent the morphological and ultrastructural differences between the various larval cell types and between larval and adult nerve cells reflect significant functional and physiological differences. It would be most interesting if such differences did exist: the trochophore would then have to be accorded independent status as an organism physiologically quite different from the adult polychaete with, in particular, a far more primitive nervous system.


Author(s):  
Brendan Ball ◽  
Michel Jangoux

The morphology of the spines of the ophiuroid Ophiocomina nigra is described, with particular reference to the nervous system and the sensory and secretory structures of the epidermis. The nervous system is composed of two main spinal nerves, located at the centre of the spine, and their associated branches. There are three secretory cell-types described: (1) fibrillar secretory cells which produce long, javelin-shaped secretory pack-ages and, occurring exclusively in the basal two thirds of the spine, penetrate deeply with their basal regions lying close to the axial nerve running through the spine centre; (2) granular secretory cells, which also penetrate deep within the spine, contain secretory granules in the form of spherical dense vesicles (~1.3 μm in diameter); and (3) goblet secretory cells, filled with packages of loose amorphous material, are superficial in location and usually found associated with a type A ciliated sensory cell. The secretions of the fibrillar and granular secretory cells are thought to perform the functions of defence and feeding respectively. A number of different ciliated sensory cell-types have been identified. Apart from the situation with the goblet cells, no close association was found between secretory and sensory cells. It is suggested that the nervous, sensory and secretory cells act together to form a mucous secretion system with centralized, rather than local control. This system appears to operate when it is advantageous to produce secretion all over the body simultaneously once any portion is stimulated. Stimulation of sensory cells might result in axonal excitation of the spinal nerves and hence to the entire epineural nervous system.


Author(s):  
Sneha Ray ◽  
Aakanksha Singhvi

The peripheral nervous system (PNS) receives diverse sensory stimuli from the environment and transmits this information to the central nervous system (CNS) for subsequent processing. Thus, proper functions of cells in peripheral sense organs are a critical gate-keeper to generating appropriate animal sensory behaviors, and indeed their dysfunction tracks sensory deficits, sensorineural disorders, and aging. Like the CNS, the PNS comprises two major cell types, neurons (or sensory cells) and glia (or glia-like supporting neuroepithelial cells). One classic function of PNS glia is to modulate the ionic concentration around associated sensory cells. Here, we review current knowledge of how non-myelinating support cell glia of the PNS regulate the ionic milieu around sensory cell endings across species and systems. Molecular studies reviewed here suggest that, rather than being a passive homeostatic response, glial ionic regulation may in fact actively modulate sensory perception, implying that PNS glia may be active contributors to sensorineural information processing. This is reminiscent of emerging studies suggesting analogous roles for CNS glia in modulating neural circuit processing. We therefore suggest that deeper molecular mechanistic investigations into critical PNS glial functions like ionic regulation are essential to comprehensively understand sensorineural health, disease, and aging.


2019 ◽  
Author(s):  
◽  
Adam Jared Northcutt

Throughout the life of an organism, the nervous system must be able to balance changing in response to environmental stimuli with the need to produce reliable, repeatable activity patterns to create stereotyped behaviors. Understanding the mechanisms responsible for this regulation requires a wealth of knowledge about the neural system, ranging from network connectivity and cell type identification to intrinsic neuronal excitability and transcriptomic expression. To make strides in this area, we have employed the well-described stomatogastric nervous system of the Jonah crab Cancer borealis to examine the molecular underpinnings and regulation of neuron cell identity. Several crustacean circuits, including the stomatogastric nervous system and the cardiac ganglion, continue to provide important new insights into circuit dynamics and modulation (Diehl, White, Stein, and Nusbaum, 2013; Marder, 2012; Marder and Bucher, 2007; Williams et al., 2013), but this work has been partially hampered by the lack of extensive molecular sequence knowledge in crustaceans. Here we generated de novo transcriptome assembly from central nervous system tissue for C. borealis producing 42,766 contigs, focusing on an initial identification, curation, and comparison of genes that will have the most profound impact on our understanding of circuit function in these species. This included genes for 34 distinct ion channel types, 17 biogenic amine and 5 GABA receptors, 28 major transmitter receptor subtypes including glutamate and acetylcholine receptors, and 6 gap junction proteins -- the Innexins. ... With this reference transcriptome and annotated sequences in hand, we sought to determine the strengths and limitations of using the neuronal molecular profile to classify them into cell types. ... Since the resulting activity of a neuron is the product of the expression of ion channel genes, we sought to further probe the expression profile of neurons across a range of cell types to understand how these patterns of mRNA abundance relate to the properties of individual cell types. ... Finally, we sought to better understand the molecular underpinnings of how these correlated patterns of mRNA expression are generated and maintained.


Viruses ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 91
Author(s):  
Verena Schultz ◽  
Stephanie L. Cumberworth ◽  
Quan Gu ◽  
Natasha Johnson ◽  
Claire L. Donald ◽  
...  

Understanding how Zika virus (Flaviviridae; ZIKV) affects neural cells is paramount in comprehending pathologies associated with infection. Whilst the effects of ZIKV in neural development are well documented, impact on the adult nervous system remains obscure. Here, we investigated the effects of ZIKV infection in established mature myelinated central nervous system (CNS) cultures. Infection incurred damage to myelinated fibers, with ZIKV-positive cells appearing when myelin damage was first detected as well as axonal pathology, suggesting the latter was a consequence of oligodendroglia infection. Transcriptome analysis revealed host factors that were upregulated during ZIKV infection. One such factor, CCL5, was validated in vitro as inhibiting myelination. Transferred UV-inactivated media from infected cultures did not damage myelin and axons, suggesting that viral replication is necessary to induce the observed effects. These data show that ZIKV infection affects CNS cells even after myelination—which is critical for saltatory conduction and neuronal function—has taken place. Understanding the targets of this virus across developmental stages including the mature CNS, and the subsequent effects of infection of cell types, is necessary to understand effective time frames for therapeutic intervention.


2021 ◽  
Vol 22 (11) ◽  
pp. 5793
Author(s):  
Brianna M. Quinville ◽  
Natalie M. Deschenes ◽  
Alex E. Ryckman ◽  
Jagdeep S. Walia

Sphingolipids are a specialized group of lipids essential to the composition of the plasma membrane of many cell types; however, they are primarily localized within the nervous system. The amphipathic properties of sphingolipids enable their participation in a variety of intricate metabolic pathways. Sphingoid bases are the building blocks for all sphingolipid derivatives, comprising a complex class of lipids. The biosynthesis and catabolism of these lipids play an integral role in small- and large-scale body functions, including participation in membrane domains and signalling; cell proliferation, death, migration, and invasiveness; inflammation; and central nervous system development. Recently, sphingolipids have become the focus of several fields of research in the medical and biological sciences, as these bioactive lipids have been identified as potent signalling and messenger molecules. Sphingolipids are now being exploited as therapeutic targets for several pathologies. Here we present a comprehensive review of the structure and metabolism of sphingolipids and their many functional roles within the cell. In addition, we highlight the role of sphingolipids in several pathologies, including inflammatory disease, cystic fibrosis, cancer, Alzheimer’s and Parkinson’s disease, and lysosomal storage disorders.


2006 ◽  
Vol 496 (3) ◽  
pp. 406-421 ◽  
Author(s):  
Andrew E. Christie ◽  
Elizabeth A. Stemmler ◽  
Braulio Peguero ◽  
Daniel I. Messinger ◽  
Heather L. Provencher ◽  
...  

1990 ◽  
Vol 38 (2) ◽  
pp. 171-178 ◽  
Author(s):  
D B Zimmer ◽  
M A Magnuson

We used immunohistochemical techniques to analyze the cell distribution of phosphoenolpyruvate carboxykinase (PEPCK) in adult and developing mouse tissues. PEPCK immunoreactivity was detected in many tissues, including some that had not been previously reported to contain PEPCK enzyme activity (bladder, stomach, ovary, vagina, parotid gland, submaxillary gland, and eye). In some multicellular tissues, PEPCK immunoreactivity was observed in multiple cell types. Several tissues (spleen, thyroid, and submaxillary gland) contained no detectable PEPCK immunoreactivity. During development, PEPCK immunoreactivity was associated with the developing nervous system and somites in 15-day embryos. At prenatal day 18, PEPCK immunoreactivity was detected only in the nervous system. At prenatal day 20, PEPCK immunoreactivity was observed in many of the tissues that contain PEPCK in the adult, with the exception of liver, lung, and stomach. PEPCK immunoreactivity was detected in liver at postnatal day 1, lung at postnatal day 7, and stomach after postnatal day 21. The only tissue in which PEPCK immunoreactivity decreased during development was the pancreas, where PEPCK immunoreactivity was detected at prenatal day 20 and was present until postnatal day 21. These results suggest that PEPCK expression is cell-type specific, more widespread than previously thought, and differentially expressed during development.


Sign in / Sign up

Export Citation Format

Share Document