Specific involvement of Ca(2+)-calmodulin kinase II in cholinergic modulation of neuronal responsiveness

1992 ◽  
Vol 68 (6) ◽  
pp. 2264-2269 ◽  
Author(s):  
W. Muller ◽  
J. J. Petrozzino ◽  
L. C. Griffith ◽  
W. Danho ◽  
J. A. Connor

1. Muscarinic agonists when applied in the hippocampus at low concentrations suppress intrinsic controls on neuronal excitability through the block of Ca(2+)-activated K conductance(s), gK (Ca), underlying the adaptation of firing and slow afterhyperpolarization (sAHP) in CA1 and CA3 neurons. Carbachol, for example, is effective at 0.1-0.3 microM suggesting activation of a relatively high-affinity receptor. 2. We have examined the mechanism of this action by using a new, highly specific, peptide inhibitor of Ca2+/calmodulin-dependent protein kinase II (CaMKII) as well as other kinase inhibitors and show that the muscarinic block of gK (Ca) relies on CaMKII activation in both CA1 and CA3 neurons. Thus phosphorylation of these channels or of an intermediary protein causes the channels to remain closed in the presence of Ca2+ and depolarization. 3. The very similar electrophysiological effects of serotonergic and glutamatergic agonists are mediated either through other kinases or by entirely different processes. 4. Block of intrinsic phosphatase activity by okadaic acid also reduced adaptation and sAHP, and muscarinic agonists had no further effect on these quantities. 5. The removal of presynaptic cholinergic inputs to the hippocampus in animals has a deleterious effect on the performance of tasks requiring spatial memory and is also implicated as a cause of cognitive disorders in humans. By increasing Ca2+ accumulation during electrical activity and promoting CaMKII activity, muscarinic input provides parallel reinforcing pathways for the induction of long-term potentiation, an important cellular memory mechanism. This suggests a possible link between behavioral and cellular approaches to the analysis of learning and memory.

2020 ◽  
Author(s):  
Elena Vicario-Orri ◽  
Kensaku Kasuga ◽  
Sheue-Houy Tyan ◽  
Karen Chiang ◽  
Silvia Viana da Silva ◽  
...  

ABSTRACTThe patterns of Aβ-induced synaptic injury were examined after targeting of the amyloid precursor protein (APP) preferentially to either CA1 or CA3 neurons using Cre-lox technology combined with tetracycline-regulated expression. Both CA1- and CA3-APP-expressing transgenic mouse lines exhibited reduction in long-term potentiation (LTP) only when APP was expressed in neurons presynaptic to the recording site, whereas LTP remained comparable to wild-type mice when APP was expressed in postsynaptic neurons. As quantified by both light and electron microscopy, this orientation-specific impairment in synaptic plasticity was mirrored by synaptic loss in regions receiving axonal inputs from neurons expressing APP. Furthermore, A(plaque deposition also occurred only in the postsynaptic axonal fields of APP-expressing neurons. These deficits were reversed not only with doxycycline to inhibit APP expression but also with γ-secretase and Fyn kinase inhibitors, supporting the interpretation that the observed synaptic injury was mediated by Aβ. Taken together, these results demonstrate that APP/Aβ-induced synaptic toxicity is preferentially initiated by signaling of presynaptically expressed APP to the postsynaptic compartment.


2003 ◽  
Vol 358 (1432) ◽  
pp. 829-842 ◽  
Author(s):  
John Lisman

This article attempts an overview of the mechanism of NMDAR-dependent long-term potentiation (LTP) and its role in hippocampal networks. Efforts are made to integrate information, often in speculative ways, and to identify unresolved issues about the induction, expression and molecular storage processes. The pre/post debate about LTP expression has been particularly difficult to resolve. The following hypothesis attempts to reconcile the available physiological evidence as well as anatomical evidence that LTP increases synapse size. It is proposed that synapses are composed of a variable number of trans-synaptic modules, each having presynaptic release sites and a postsynaptic structure that can be AMPAfied by the addition of a hyperslot assembly that anchors 10-20 AMPA channels. According to a newly developed view of transmission, the quantal response is generated by AMPA channels near the site of vesicle release and so will depend on whether the module where release occurs has been AMPAfied. LTP expression may involve two structurally mediated processes: (i) the AMPAfication of existing modules by addition of hyperslot assemblies: this is a purely postsynaptic process and produces an increase in the probability of an AMPA response, with no change in the NMDA component; and (ii) the addition of new modules: this is a structurally coordinated pre/post process that leads to LTP-induced synapse enlargement and potentiation of the NMDA component owing to an increase in the number of release sites (the number of NMDA channels is assumed to be fixed). The protocol used for LTP induction appears to affect the proportion of these two processes; pairing protocols that involve low-frequency presynaptic stimulation induce only AMPAfication, making LTP purely postsynaptic, whereas high-frequency stimulation evokes both processes, giving rise to a presynaptic component. This model is capable of reconciling much of the seemingly contradictory evidence in the pre/post debate. The structural nature of the postulated changes is relevant to a second debate: whether a CaMKII switch or protein-dependent structural change is the molecular memory mechanism. A possible reconciliation is that a reversible CaMKII switch controls the construction of modules and hyperslot assemblies from newly synthesized proteins.


1996 ◽  
Vol 76 (5) ◽  
pp. 3038-3047 ◽  
Author(s):  
I. Cavus ◽  
T. Teyler

1. The effects of protein kinase inhibitors on N-methyl-D-aspartate (NMDA)-receptor-mediated, voltage-dependent calcium channel (VDCC)-mediated, and 100-Hz long-term potentiation (LTP) were studied in area CA1 of rat hippocampal slices. 2. A 25-Hz tetanus induced a quickly developing potentiation that was blocked by the NMDA antagonist D,L-2-amino-5-phosphonovaleric acid (APV) and was not affected by the L-type VDCC inhibitor nifedipine, suggesting that it was mediated by NMDA receptors (NMDA-LTP). 3. Application of a 200-Hz tetanus in APV induced a slowly developing NMDA-receptor-independent potentiation that was blocked by nifedipine and thus named VDCC-LTP. NMDA- and VDCC-LTP reached comparable magnitudes despite their different induction parameters and developmental kinetics. 4. Bath perfusion of the broad-spectrum serine/threonine kinase inhibitor 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7) blocked NMDA-LTP but not VDCC-LTP, whereas the tyrosine kinase inhibitors genistein and lavendustin A blocked VDCC-LTP but not NMDA-LTP. These results suggest a differential involvement of H-7-sensitive serine/threonine kinases and tyrosine kinases in the two forms of LTP. 5. Tetanization of 200 Hz in control media resulted in a compound potentiation twice as large as NMDA- or VDCC-LTP, implying that the two forms of LTP did not facilitate or reduce each other's expression. The often-used 100-Hz tetanus (1 s twice) induced a potentiation that was comparable in size with the 200-Hz compound LTP. Nifedipine, genistein, and lavendustin A reduced the 100-Hz LTP by approximately 50%, suggesting that this LTP is also a compound potentiation consisting of NMDA- and VDCC-mediated components and their corresponding signal transduction pathways.


Nature ◽  
1991 ◽  
Vol 353 (6344) ◽  
pp. 558-560 ◽  
Author(s):  
Thomas J. O'Dell ◽  
Eric R. Kandel ◽  
Seth G. N. Grant

2003 ◽  
Vol 358 (1432) ◽  
pp. 797-804 ◽  
Author(s):  
Gaël Hédou ◽  
Isabelle M. Mansuy

This article reviews technical and conceptual advances in unravelling the molecular bases of long-term potentiation (LTP), learning and memory using genetic approaches. We focus on studies aimed at testing a model suggesting that protein kinases and protein phosphatases balance each other to control synaptic strength and plasticity. We describe how gene ‘knock-out’ technology was initially exploited to disrupt the Ca 2+ /calmodulin-dependent protein kinase II α (CaMKII α ) gene and how refined knock-in techniques later allowed an analysis of the role of distinct phosphorylation sites in CaMKII. Further to gene recombination, regulated gene expression using the tetracycline-controlled transactivator and reverse tetracycline-controlled transactivator systems, a powerful new means for modulating the activity of specific molecules, has been applied to CaMKII α and the opposing protein phosphatase calcineurin. Together with electro-physiological and behavioural evaluation of the engineered mutant animals, these genetic methodologies have helped gain insight into the molecular mechanisms of plasticity and memory. Further technical developments are, however, awaited for an even higher level of finesse.


2006 ◽  
Vol 174 (7) ◽  
pp. 1071-1085 ◽  
Author(s):  
Vladimir Sytnyk ◽  
Iryna Leshchyns'ka ◽  
Alexander G. Nikonenko ◽  
Melitta Schachner

The neural cell adhesion molecule (NCAM) regulates synapse formation and synaptic strength via mechanisms that have remained unknown. We show that NCAM associates with the postsynaptic spectrin-based scaffold, cross-linking NCAM with the N-methyl-d-aspartate (NMDA) receptor and Ca2+/calmodulin-dependent protein kinase II α (CaMKIIα) in a manner not firmly or directly linked to PSD95 and α-actinin. Clustering of NCAM promotes formation of detergent-insoluble complexes enriched in postsynaptic proteins and resembling postsynaptic densities. Disruption of the NCAM–spectrin complex decreases the size of postsynaptic densities and reduces synaptic targeting of NCAM–spectrin–associated postsynaptic proteins, including spectrin, NMDA receptors, and CaMKIIα. Degeneration of the spectrin scaffold in NCAM-deficient neurons results in an inability to recruit CaMKIIα to synapses after NMDA receptor activation, which is a critical process in NMDA receptor–dependent long-term potentiation. The combined observations indicate that NCAM promotes assembly of the spectrin-based postsynaptic signaling complex, which is required for activity-associated, long-lasting changes in synaptic strength. Its abnormal function may contribute to the etiology of neuropsychiatric disorders associated with mutations in or abnormal expression of NCAM.


Sign in / Sign up

Export Citation Format

Share Document